

1 **A protein language model unveils the *E. coli* pangenome functional
2 landscape regulating host proteostasis**

3

4

5 Daniel Martinez-Martinez^{1,2,6,*}, Andreea Aprodu^{3,6}, Cassandra Backes^{1,2,3,6,†}, Franziska
6 Ottens³, Aleksandra Zečić⁴, Hannah M. Doherty³, Jonas Widder³, Andrew Ivan¹, Laurence
7 Game¹, Iliyana Kaneva¹, Georgia Roumelioti¹, Alex Montoya¹, Holger Kramer¹, Thorsten
8 Hoppe³, Filipe Cabreiro^{1,2,3,5,7,*}

9

10

11 1. MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0HS, UK

12 2. Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du
13 Cane Road, London, W12 0HS, UK

14 3. University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence
15 Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne,
16 Germany.

17 4. University of Cologne, Faculty of Medicine, Cluster of Excellence Cellular Stress Responses
18 in Aging-associated Diseases (CECAD), 50931 Cologne, Germany.

19 5. Center for Molecular Medicine Cologne (CMMC) - University of Cologne, Robert-Koch Str.
20 21, 50931 Cologne, Germany.

21 6. These authors contributed equally to this work.

22 7. Lead Contact

23 *Correspondence: d.martinez@lms.mrc.ac.uk, f.cabreiro@uni-koeln.de

24

25 †. Current address: Laboratoire de Bioénergétique et Ingénierie des protéines, CNRS, 31
26 chemin Joseph Aiguier, 13009 Marseille, France.

27

28

29 **ABSTRACT**

30

31 Understanding how bacterial diversity at strain level resolution shapes host physiology is a
32 central challenge in microbiome research. The vast, functionally unknown genetic diversity
33 within a species pangenome makes it difficult to connect genes to function and their impact
34 on host physiology. Here, we explore how the functional landscape of the *Escherichia coli*
35 pangenome impacts transcriptional responses in *Caenorhabditis elegans* and show that
36 traditional gene-centric methods fail to provide significant functional associations with the host.
37 Thus, we developed a pangenome framework that leverages the protein language model
38 ProtT5 and generates unique strain embeddings representing the functional potential of each
39 9,558 *E. coli* isolate. Stratification of the pangenome into distinct functional guilds aligned with
40 key host processes such as cell division, metabolism and proteostasis. Further, we identify a
41 critical interplay between the extensive network of bacterial chaperones and proteases in
42 regulating host proteostasis. We find that the bacterial chaperone DNAK/HSP70 and protease
43 ClpX fine-tune the host ubiquitin-proteasome system by controlling propionate and vitamin
44 B12 availability. These findings reveal a conserved 'co-proteostasis' mechanism as a key
45 phenomenon modulating host-microbe interactions through metabolic communication. Our
46 pangenome-to-phenotype approach offers a powerful strategy to decode bacterial
47 pangenome functional diversity, directly linking microbial genomic variation to host
48 physiological outcomes.

49

50

51 **INTRODUCTION**

52

53 The metabolic capacity of the host is vastly expanded by its resident microbiome, yet
54 correlating specific microbial signatures with physiological outcomes remains a fundamental
55 challenge. Animal models such as *Caenorhabditis elegans* have been successfully
56 repurposed as biosensors to study the mechanisms underlying host-microbe interactions¹⁻³.
57 However, while strain-specific impacts on host physiology are increasingly recognized, the
58 vast genetic diversity within individual bacterial species remains largely underexplored.
59 Current strategies relying on phylogenetic markers or linear reference genomes fail to fully
60 capture this functional potential, leaving a gap in our ability to predict how intra-species genetic
61 heterogeneity drives distinct host phenotypes⁴. The *E. coli* pangenome represents a vast
62 reservoir of uncharted metabolic potential given its ecological ubiquity and open genomic
63 architecture^{5,6}. For instance, distinct *E. coli* strains elicit divergent host responses through
64 differential production of metabolites, such as vitamin B12 or betaine⁷⁻⁹. Yet, standard
65 laboratory strains often used to study these interactions capture only a fraction of this natural
66 diversity¹⁰. Consequently, we require analytical frameworks that move beyond sequence
67 identity to capture the latent functional potential of bacterial proteomes and map them directly
68 to host physiology, thereby bridging the gap between reductionist models and the complex
69 reality of natural microbiomes¹¹.

70

71 Here, we bridge this gap by combining high-throughput transcriptomics of *C. elegans* with a
72 novel machine-learning approach that utilizes the protein language model (pLM) ProtT5¹² to
73 recreate the functional landscape of a pangenome of 9,558 *E. coli* assemblies. We integrated
74 the geometrical representation from the pLM with the genetic background of the strains to
75 generate strain embeddings, vector representations encapsulating the total functional
76 potential of a bacterial strain. By exposing *C. elegans* to a diverse library of 592 *E. coli* strains,
77 we demonstrate that the geometry of the bacterial embedding space accurately predicts host
78 phenotypic variance, revealing a profound link between the microbial pangenome and host
79 proteostasis. We identify a cross-domain co-proteostasis mechanism where the bacterial
80 chaperone network (DnaK/ClpX) regulates vitamin B12 and propionate metabolism, dictating
81 metabolic rewiring in the host through B12-dependent or independent metabolic shunt that
82 regulates host ubiquitin-proteasome system (UPS) function.

83

84 **RESULTS**

85

86 **The *E. coli* pangenome elicits a vast range of transcriptomic profiles in *C. elegans***

87 *E. coli* is known to have an open pangenome⁶, meaning that the various strains within the *E.*
88 *coli* species contain unique genes coding for proteins whose functions are essential for their
89 distinct functional properties. We hypothesized that the extensive genetic variation within the
90 *E. coli* pangenome dictates host responses. To interrogate these host responses to individual
91 bacterial strains, we generated high-resolution bulk RNAseq transcriptional profiles for 592
92 distinct *E. coli* – *C. elegans* mono-association pairs (Fig. 1a). We curated a library combining
93 the EcoRef collection and additional strains with broad phylogenetic coverage (Fig. 1b)^{6,10}.
94 This panel spans the major *E. coli* phylogroups, evolutionary lineages defined by specific gene
95 markers that are traditionally linked to distinct ecological roles and primarily comprises
96 commensal strains isolated from human and animal hosts (Fig. 1c; Extended Data Fig. 1a),
97 with roughly 50% belonging to phylogroup B2. Analysis of the strain genomes confirmed an
98 open pangenome architecture: a conserved core of 3,265 gene families (>95% presence), a
99 shell genome of 2,589 gene families (15% - 95% presence), and a diverse and large cloud
100 genome of 20,113 rare gene families (<15% presence) (Fig. 1d). This distribution highlights
101 the immense reservoir of genetic diversity available to influence host physiology. Next, we
102 profiled the host response by raising synchronized *C. elegans* (N2) on each bacterial strain
103 and sequencing total RNA from Day 1 adults. Following rigorous quality filtering and batch
104 effect correction (Extended Data Fig. 1b-d), we established a robust transcriptional dataset
105 comprising 16,410 unique genes. This yielded high-coverage data with an average of $8,545 \pm$
106 254 transcripts detected per sample (Extended Data Fig. 1e). Remarkably, we found that the
107 commonly used laboratory strain *E. coli* OP50 used for most studies in classic genetics and
108 aging related publications induces a transcriptional profile in *C. elegans* distinct to the
109 transcriptional signatures of the majority of strains (Fig. 1e), including the K-12 MG1665 lab
110 strain whose genome was one of the first *E. coli* reference sequences to be completed and
111 extensively curated.

112

113 Next, we investigated whether grouping strains by phylogroup, as a proxy for bacterial
114 function, would reveal a structure in the worm transcriptional response to the *E. coli* strain
115 panel. The whole transcriptional profiles were correlated to the phylogroup partitioning of the
116 *E. coli* pangenome and variance explained by this functional division was measured. Principal
117 component analysis (PCA) revealed a modest separation between the phylogroups included
118 in this screening (Fig. 1f), consistent with a weak clustering of pairwise Euclidean distances
119 between strains (Extended Data Fig. 1d). Moreover, a permutational analysis of variance
120 (PERMANOVA) for the full transcriptome dataset indicated a significant effect of phylogroup.

121 However, the model explained only approximately 1.5% variance. Nevertheless, the large
122 Euclidean distance in transcriptional responses observed between strains known to elicit a
123 distinct physiological response in the worm such as OP50 and MG1655 (Extended Data Fig.
124 1f), suggests that a robust biological signal exists within this transcriptional landscape. To
125 facilitate mapping the worm response onto the *E. coli* pangenome, we reasoned that clustering
126 the normalized read counts to discrete functional categories would improve our ability to map
127 worm response. For this, the curated worm database from Holdorf *et al.*¹³ was leveraged and
128 normalized read counts were aggregated for all genes within each functional category at the
129 three defined hierarchical levels defined in the database (Fig. 1a). This yielded three matrices
130 of increased granularity, ranging from 33 broad categories (level 1) to 461 highly specific
131 functional categories (level 3). This stratification generated a dense phenotypic landscape
132 comprising 272,912 phenotypic worm data points at level 3 functional category resolution.
133 PCA for each category (Fig. 1g) revealed a complex landscape where simple patterns remain
134 elusive, underscoring the difficulty of mapping pangenome structure onto worm responses
135 using traditional means. While PERMANOVA testing for level 3 functional categories identified
136 a statistically significant effect ($P= 0.041$), the low variance explained (1.45%) highlights that
137 evolutionary history alone is a minor driver of host phenotype. Together, these results show
138 that *C. elegans* mounts highly-strain specific responses to *E. coli* strains, both at the whole
139 transcriptional level and at the functional category levels. This confirms that the openness and
140 complexity of the *E. coli* pangenome pose a high-dimensional biological challenge that cannot
141 be fully captured by a standard phylogenetics approach.

142

143 **The functional content of *E. coli* is encoded in the protein embedding space**

144 The genetic repertoire of commonly used laboratory strains represents only a fraction of the
145 total species diversity⁵. However, there is a consensus supporting that *E. coli* clades, whether
146 classified from multi-locus sequence typing (MLST) or broader phylogroup classification,
147 harbor characteristic functional enrichments associated with their primary ecological
148 niche^{6,10,14}. Given the shortcomings of current approaches, to systematically investigate the
149 functional diversity of the *E. coli* pangenome, we established a comprehensive panel of
150 genome assemblies to fully capture this functional richness. We accessed the NCBI Genomes
151 database (Jan 2024) and selected 8,829 high-quality genome assemblies, to which we added
152 assemblies for the strains available in our laboratory, yielding a total of 9,558 high-quality
153 genomes (see Methods, Extended Data Fig.1g). Phylogroup proportions in this extended
154 collection followed a similar pattern as in our laboratory panel (Fig. 2b, $R = 0.82$, $p = 0.014$,
155 Extended Data Fig. 2a). This resulted in a total of 92,435 gene families split into a core of
156 3,005 genes, a shell of 2,917 genes, and a cloud of 86,513 genes (Fig. 2a). Consistent with
157 previous work, the *E. coli* pangenome remained open as indicated by the Heap's law fit ($\gamma =$

158 0.28, Extended Data Fig. 2b). However, we observe that new functions start to saturate, with
159 the core genome rapidly stabilizing. Additionally, the pairwise genetic similarity for this larger
160 panel is similar to our laboratory panel (Jaccard similarity of 0.641 and 0.65 respectively,
161 Extended Data Fig. 2c). Phylogeny on the core genome shows that *E. coli* robustly follows the
162 phylogroup evolutionary lineages (Fig. 2c). When considering gene presence-absence
163 patterns within the cloud genome as a proxy for differential functional content, strain
164 relationships strongly follow the same phylogenetic structure (Fig. 2d). This congruence
165 between core genome phylogeny and total gene content demonstrates that a shared
166 evolutionary history shapes the full genomic repertoire of *E. coli*, linking deep ancestry to
167 functional gene repertoire at the strain level.

168

169 To characterize functional content, four gene ontology (GO) annotation strategies were
170 benchmarked by leveraging the linear reference of representative gene families. The most
171 widely used methods rely on sequence similarity which favors accuracy at the cost of limited
172 range. Recently, the development of methods relying on machine learning (ML) models have
173 been proven to achieve significant improvements in quality and coverage¹⁵. The 4 methods to
174 predict GO terms included Interproscan¹⁶ and eggNOG-mapper¹⁷, which are based on
175 sequence similarity, and ML methods such as Proteininfer¹⁸, a Convolutional Neural Network
176 method, and GoPredSim¹⁹, which leverages the protein language model (pLM) ProtT5-XL-
177 BFD¹² by creating an embedding representation for each protein. ML-based approaches
178 annotated substantially more genes per genome than sequence-similarity based methods
179 (41.7-52.7% increase, Extended Data Fig. 2d, p<0.001, one-way ANOVA). This difference
180 was primarily driven by annotations in the cloud and shell genomes where unique sequences
181 are mostly found (Extended Data Fig. 2e,f). Despite this significant improvement, 2,873 gene
182 families remained unannotated. Exploiting the hierarchical information contained in GO
183 annotations, an analysis of the maximum information content per gene and method revealed
184 that the GoPredSim, which leverages the pLM ProtT5 embeddings, produced the most
185 informative annotations (Extended Data Fig. 2g). These results underscore that much of the
186 accessory functional landscape from *E. coli* remains largely uncharacterized but can be more
187 effectively represented using pLM embedding-based models, given the prediction abilities and
188 breadth of information.

189

190 Protein embeddings from the ProtT5-XL-BFD pLM were then used to create a comprehensive
191 functional map of the *E. coli* pangenome (Fig. 1a, Extended Data Fig. 1g). PCA of the resulting
192 high-dimensional embeddings revealed a spatial organization aligned with pangenome
193 structure (Fig. 2e, Extended Data Fig. 2h). The core genome occupies a compact, dense
194 region of the space, which expands through the shell genome and into the vast, sparsely

195 populated region occupied by the cloud genome with significant differences between these
196 compartments (Fig. 2f, Extended Data Fig. 2h, $p < 0.001$, one-way ANOVA). This geometric
197 arrangement demonstrates that the embedding space quantitatively captures functional
198 diversity, transitioning from the conserved core functions to the diverse and mobile cloud
199 genome. Analysis of the COG categories further show that core-associated functions such as
200 energy production and conversion (C) or cell cycle control(D) are enriched in the dense core
201 region. However, functions known to be environment-dependent such as carbohydrate
202 transport (G), defense mechanisms (V) or poorly characterized (S) are shifted towards the
203 periphery (Figure 2g,h,i, Extended Data Fig. 2i,j,k). Collectively, these results establish that
204 the geometry of the protein embedding space created through the pLM ProtT5 acts as a
205 quantitative proxy for the pangenome's functional architecture.

206
207 Given that the functional content of a pangenome is encoded in the geometry of the protein
208 embedding space, we extended this framework to establish a microbial strain identity, defined
209 by the combination of its conserved core functions and unique set of accessory functions.
210 Each strain was embedded as a single vector by combining binary gene content
211 (presence/absence) with the corresponding protein embeddings, calculated as an average of
212 all protein vectors considering the whole gene content (see Methods section), yielding a
213 unique representation per strain that determines their functional potential. PCA of these strain
214 embeddings produced a pangenome-level functional landscape in which strains are
215 positioned according to functional capacity (Fig. 2j, Extended Data Fig. 2l). The principal
216 component analysis of the strain embeddings revealed a structured functional landscape that
217 validates our model while highlighting the limitations of pure phylogeny approaches ($p < 0.001$,
218 one-way ANOVA, Extended Data Fig. 3b). PC2 (14.68%) cleanly separated phylogroups,
219 confirming that the embeddings correctly encoded the strains' evolutionary history, whereas
220 PC1 (35.45%) was driven by within-phylogroup variability. This analysis proves that the vast
221 majority of *E. coli* functional diversity is driven by strain-specific adaptations. This pattern is
222 captured by alternative embedding methods, supporting the robustness of these findings
223 (Extended Data Fig. 3a,c). We observe the strain embeddings recaptures the clusters defined
224 by ecology and evolution where phylogroups A, B1 and C formed a clearly defined cluster,
225 followed by a distinct cluster composed of phylogroups D, E, F and G bridging towards the
226 phylogroup B2, which occupied a distinct, distant region. This separation of phylogroups along
227 PC2 supports the evolutionary history between the phylogroups (Fig.2i). Together, these
228 results demonstrate that protein language model embeddings provide a powerful, compact
229 representation of both genes and whole genomes, enabling the encoding of *E. coli*
230 pangenome structure, the delineation of conserved versus accessory functions, and the

231 representation of entire strains as single, functionally meaningful vectors that can be directly
232 linked to host phenotypes.

233

234 **Host physiology maps onto the strain embeddings functional landscape**

235 We next hypothesized whether using the *E. coli* strain embeddings would improve our ability
236 to establish causal links between microbial functions and host physiology at the pathway level.
237 To this end, we leveraged the geometry of the PCA projection coordinates derived from the
238 strain embeddings as a functional map to position *C. elegans* transcriptional and functional
239 categories (Fig. 1a). The strain embedding map for the subset of *E. coli* strains used in
240 monoassociation experiments recapitulated the distinctive structure observed for the full
241 pangenome map, revealing a clear separation within and between phylogroups along PC1
242 and PC2 coordinates, respectively (Fig. 3a). To connect *E. coli* pangenome functional
243 landscape and the worm physiology, we calculated the Spearman correlations between the
244 level 3 pathway categories in the worm transcriptome to the PC1 and PC2 coordinates of the
245 strain embeddings. This analysis revealed a distinct set of host functional categories regulated
246 at the pangenome level (Fig. 3b). Notably, all significant correlations between host pathways
247 and strain embedding axes were linked to PC2, which separates the distinct phylogroups in
248 the pangenome (Fig. 3c, Extended Data Fig. 3d). The significant pathways involved in the host
249 physiology regulation at the pangenome level, clustered into biologically broad processes
250 including cell cycle, central and one-carbon metabolism, proteostasis and response to stress
251 (Fig. 3d, $p < 0.05$, BH correction). These processes have been formerly linked to the regulation
252 of several host phenotypes, including development and aging²⁰⁻²². Together, these findings
253 suggest that functional variation across the *E. coli* pangenome encodes regulatory signals that
254 can modulate core host physiological programs.

255

256 Given the *E. coli* pangenome functional landscape - host physiology connections, we sought
257 to validate these associations experimentally. We performed a reporter-based quantitative
258 screen of 13 fluorescent transcriptional or translational reporters representing key genes
259 within the main pathways identified in the functional mapping (Extended Data Fig. 4a). We
260 confirmed the robustness of the experimental pipeline by testing two independent biological
261 replicates over 589 *E. coli* pangenome strains for each reporter (Pearson correlation > 0.7 ,
262 Extended Data Fig. 4b). We then mapped the reporter gene expression levels to the *E. coli*
263 strain embeddings and found that all 13 gene reporter expression profiles significantly
264 correlated with the strain embedding geometrical projection, mirroring the transcriptional
265 landscape pattern observed (Fig. 3e, $p < 0.05$, BH correction). Next, we leveraged these data
266 to obtain further insights between microbe-host functional relationships. Plotting reporter
267 expression by strain revealed distinct transcriptional programs which were largely independent

268 of their phylogenetic relatedness (Extended Data Fig. 4c). Similarly, pairwise strain
269 correlations of reporter activity indicated that bacterial functional guilds transcended
270 phylogenetic relatedness on regulating specific host transcriptional responses (Fig. 3f,g,
271 Extended Data Fig. 4d). Interestingly, we observed a global bias towards positive associations
272 between strain pairs (~65%, Extended Data Fig. 4e, f), implying a shared host transcriptional
273 response across the *E. coli* pangenome. Consistent with this, we observed significant pairwise
274 correlations between the 13 reporters (Fig. 3h).

275

276 Together, these results show that the *E. coli* functional landscape can be quantitatively
277 mapped onto the host transcriptional and physiological programs by leveraging strain
278 embeddings, uncovering bacterial-driven regulation of fundamental host processes such as
279 central and 1CC metabolism, stress response, or proteostasis. Based on these findings, we
280 next examined how *E. coli* influences host proteostasis, which remain insufficiently
281 characterized in this context.

282

283 **Propionate and vitamin B12 at the interface of bacterial-host “co-proteostasis”**

284 In eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a central role in maintaining
285 proteostasis by controlling the degradation of damaged proteins. Yet, how the UPS integrates
286 environmental signals to support organismal physiology remains poorly understood. First, we
287 grew the *C. elegans* ubiquitin-proteasome (UPS) reporter strain²³ on individual bacterial
288 isolates from distinct phyla of the *C. elegans* microbiome²⁴. Host proteostasis displayed strong
289 bacterial strain-dependent variation (Extended Data Fig. 5a, as observed for the *E. coli*
290 pangenome (Extended Data Fig. 4c) and *E. coli* laboratory strains²⁵, suggesting fine levels of
291 mechanistic regulation. To identify the underlying mechanism(s), we performed a qualitative
292 screen using the UPS worm reporter strain, together with the single deletion *E. coli* KEIO
293 library and found that deletion of the protease Lon and the homolog of the heat shock protein
294 HSP70/DnaK/DnaJ significantly decreased or increased UPS fluorescence, respectively. This
295 led us to hypothesize that bacterial proteostasis could regulate host proteostasis. Next, we
296 quantitatively tested all known *E. coli* chaperones as well as proteases (Fig. 4a). We confirmed
297 that deletion of the functional DnaK and DnaJ heat shock pair increased UPS fluorescence
298 and respective protein levels, while deletion of Lon, ClpX, BepA proteases and HtpG, HscA,
299 CbpM chaperones (Fig. 4b,c; Extended Data Fig. 5b-d) significantly reduced UPS
300 fluorescence and protein levels.

301 To better understand the regulatory networks between these chaperones and proteases and
302 the potential mechanisms involved in the regulation of host proteostasis, we performed
303 proteomics of each individual mutant strain. Deletion of *dnaK* led to pronounced changes in

304 the proteome landscape followed by the deletion of *lon* and *clpX* (Extended Data Fig. 6a). We
305 observed an intricate compensatory mechanism whereby the single deletion of any of these
306 proteases or chaperones leads to significant changes in a network of other chaperones and
307 proteases (Extended Data Fig. 6b), with greater effects observed for *dnaK* and *clpX* mutants.
308 Thus, we tested whether co-regulatory effects of proteases and chaperones could regulate
309 host UPS response through the creation of double-mutant *E. coli* strains of *dnaK*. Notably,
310 only the combined loss of *dnaK* and *clpX* abolished the UPS activation induced by the *dnaK*
311 mutant alone (Fig. 4e, Extended Data Fig. 6c,d) without compromising bacterial fitness
312 (Extended Data Fig. 7a). U.V-irradiation experiments to abolish metabolic activity of *E. coli*
313 and alter their metabolome²⁶, further show that UPS regulation was dependent on the active
314 metabolism of *E. coli* (Fig. 4f, Extended Data Fig. 6e). To identify the potential mechanism(s)
315 responsible, we performed proteomics in both single and double *E. coli* mutants (Fig. 4g,
316 Extended Data Fig. 7) as well as in worms grown on these bacteria (Fig. 4h, Extended Data
317 Fig. 8). Despite functional rescue at the host level, the *dnaKclpX* double mutant exhibited a
318 unique proteomic signature distinct from both single mutants and wild-type *E. coli* (Extended
319 Data Fig. 7b), as well as in worms (Extended Data Fig. 8a). KEGG analysis in both *E. coli*
320 (Extended Data Fig. 7c-g) and *C. elegans* (Extended Data Fig. 8b-f) with a focus on the
321 comparison between up and downregulated proteins of *dnaKclpX* versus *dnaK* (Fig. 4g-h),
322 which links to the loss of *dnaK* effects on host UPS, showed enrichment of central carbon and
323 amino acid metabolism pathways—particularly branched-chain amino acid (BCAA previously
324 identified as an important UPS regulator²⁷) and propionate metabolism, two directly connected
325 metabolic pathways through the sharing of propionyl-CoA—suggesting a role for metabolic
326 cross-talk in modulating host proteostasis. To determine how *E. coli* regulated BCAA and
327 propionate metabolism, we compared all proteins that were significantly down-regulated in
328 *dnaK* mutants while up-regulated in both *clpX* and *dnaKclpX* mutants (Fig. 4i). From the 33
329 proteins shown to be significant in these comparisons, the tree proteins of the TonB-ExbB-
330 ExbD energy transduction complex were strongly enriched for the Gene Ontology Molecular
331 function of energy transducer activity (FDR=0.0111, Strength=2.1) which are involved in the
332 transport of iron and vitamin B12 (VB12)²⁸. Given the well described role of bacterial VB12 in
333 the regulation of BCAA and propionate homeostasis in the host²², we investigated whether
334 VB12 and/or propionate metabolites regulated UPS proteostasis. First, we created triple
335 mutants of all known iron transporters in *E. coli* and observed that only the deletion of TonB
336 significantly increased the levels of UPS fluorescence when compared to the effect observed
337 when fed *dnaKclpX* mutants (Fig. 4j, p=0.0008, Extended Data Fig. 9a, b) suggesting a
338 regulation of TonB levels by DnaK that are controlled by ClpX. Consistent with this
339 observation, the overexpression of TonB in a *dnaK* or *dnaKclpX* mutant significantly reduced
340 UPS levels (Extended Data Fig. 9c). Overexpression of BtuB protein, a specific transporter of

341 VB12, also reduced *dnaKclpX* levels to baseline levels (Extended Data Fig. 9d) and this
342 required TonB, confirming that canonical tonB-BtuB-dependent VB12 transport is central to
343 this regulatory axis. Supplementation of VB12 uniformly decreased UPS levels in all bacterial
344 mutant backgrounds (Fig. 4k, Extended Data Fig. 9e) but significant differences in UPS levels
345 between them suggested the role of additional metabolites shaping host proteostasis. Given
346 the role of VB12 in regulating propionate metabolism, we supplemented propionate and found
347 that propionate increased UPS levels in worms fed control bacteria and *dnaKclpX* mutants but
348 not *dnaK* (Fig. 4l, Extended Data Fig. 9f). Together with our proteomic data (Fig. 4g), it
349 suggested a role for propionate as a potential metabolite regulating host proteostasis. Deletion
350 of the *sbm* operon, which encodes enzymes for the “sleeping beauty” mutase pathway that
351 converts BCAAs—particularly isoleucine—into propionate²⁹, abolished the *dnaK*-induced UPS
352 increase without affecting bacterial fitness (Fig. 4m, Extended Data Fig 9g,h), directly linking
353 bacterial propionate production to host UPS activation.

354 In *C. elegans*, propionate catabolism proceeds through a VB12-dependent canonical pathway
355 and a VB12-independent “propionate shunt,” whose activation can be monitored by the *acdh-1p::GFP* reporter²². Worms fed *dnaK* mutants showed increased *acdh-1* levels, indicating
356 elevated flux through the VB12-independent shunt, whereas worms fed *dnaKclpX* bacteria did
357 not (Fig. 4n), consistent with proteomic evidence that *dnaKclpX* suppresses *dnaK*-driven
358 metabolic rewiring. Genetic inhibition of the shunt downstream of *acdh-1* (e.g., *hphd-1*, *alh-8*)
359 or the canonical pathway (e.g., *mce-1*) elevated UPS activity (Fig. 4o, Extended Data Fig. 10a-
360 c), while VB12 supplementation reduced UPS levels in wild-type and *acdh-1* mutants but not
361 in *mce-1* or *hphd-1* mutants, demonstrating that the balance between VB12-dependent and -
362 independent propionate catabolism determines the impact of propionate on proteostasis.
363 Proteomic analyses of worms fed *dnaK* versus *dnaKclpX* bacteria revealed enrichment of
364 pathways linked to ketone metabolism (Fig. 4h), aligning with previous reports that
365 perturbations in propionate catabolism can alter ketone body pathways³⁰. RNAi of *suca-1*,
366 which contributes to conversion of acetoacetate to acetoacetyl-CoA (Extended Data Fig 10b),
367 increased UPS activity, whereas exogenous acetoacetate supplementation (independent of
368 its degradation by *atoA* or *atoB*) decreased UPS levels (Fig. 4p, Extended Data Fig 10d) ,
369 suggesting that ketone intermediates can directly modulate host proteostasis.
370

371 Collectively, these findings define a mechanistic chain in which bacterial DnaK–ClpX–TonB–
372 BtuB control bacterial proteostasis and VB12 transport, thereby shaping propionate production
373 and routing in the host, which in turn determines the balance between toxic VB12-independent
374 catabolites and protective VB12-dependent flux, ultimately tuning UPS activity and
375 proteostasis in *C. elegans*.

377 **DISCUSSION**

378

379 Metagenomic sequencing and other state-of-the art technical advances now enable high
380 throughput, high-resolution scale analyses of microbial strains across diverse and complex
381 ecosystems ranging from the human gut to marine and soil environments. Strain-level
382 resolution has recently been shown to be crucial in microbiome research and in dictating
383 microbe-host interactions. For example, strains of the same species can have diametrically
384 opposed functional, ecological, and clinical manifestations, with species-level identification
385 often leading to erroneous interpretations³¹. Strain-level characterization has also been
386 emphasized in how bacterial strains are transmitted in human populations, highlighting the
387 importance of the need to consider their biological effects^{32,33}. *Escherichia coli* has become a
388 canonical example of the diversity displayed by a bacterial species, showing that its vast
389 accessory genome harbored in its open pangenome contains an extensive array of bacterial
390 functions that can potentially alter host physiology^{6,10}. Our panel shows that any two given
391 strains can differ by more than 50% of their genetic content. A central challenge in
392 understanding the microbiome is reconciling the inherent genetic diversity contained within
393 bacterial species and how this affects host physiology^{34,35}.

394

395 Here, we present the most comprehensive analysis to date of how strain level variation within
396 a single bacterial species shapes host responses. Given the challenge in defining bacterial
397 functions for the poorly described microbial accessory genes, methods based in the
398 transformers architecture have been trained over large protein databases creating physical
399 representations of the protein space encoded in the microbiome^{36,37}. In this work, we
400 leveraged the protein embeddings predicted by the pLM¹² to study the latent functional
401 landscape encoded in the *E. coli* pangenome. By compressing the genomic and functional
402 information encoded in thousands of *E. coli* strains into unified “strain embeddings”, we
403 created a geometric map that captures the potential function per strain, which can be mapped
404 onto the host phenotype it elicits. By building a high-throughput panel of strain-host mono-
405 association spanning hundreds of *E. coli* strains, we have established an experimental
406 platform validating our computational approach and providing additional mechanistic insights.
407 Together, our data uncovers several fundamental principles in microbe-host biology at the
408 strain level. 1) Each strain elicits a unique molecular signature in the host; 2) our data shows
409 that the protein functions shared by every strain (the core) are located in a narrow geometrical
410 space compared to the vast strain-specific functions, 3) strains within the same phylogroup
411 display an ~60:40 of positively to negatively correlated effects on host responses; and 4)
412 phylogenetic relatedness between strains does not predict the host molecular programs they
413 induce. Our data supports the hypothesis that phylogeny, while important, is inadequate as a

414 single factor to link bacterial functions to host physiology. Future work will be required to
415 determine how strain-level effects manifest in the context of complex microbiota and to test
416 whether these basic principles extend to other bacterial species with open or closed
417 pangenomes.

418

419 In line with this, the canonical laboratory microbial source for *C. elegans*, the *Escherichia coli*
420 OP50 strain, elicits a distinct and divergent molecular response in the host compared with
421 other *E. coli* strains (Fig. 1e). This observation is consistent with a growing number of studies
422 incorporating multiple bacterial strains reporting strain-dependent mechanisms underlying
423 diverse host phenotypes, including drug responses^{38,39}, behavior, reproduction, and lifespan
424^{21,40,41}. Collectively, these findings suggest that the experimental convenience afforded by *E.*
425 *coli* OP50 may be offset by the specific molecular and physiological signature it imposes on
426 *C. elegans*, potentially failing to reflect the “true” wild-type biology of the host and motivating
427 a critical re-evaluation of the foundational literature of an entire field. This may possibly be
428 better captured using native microbiome *C. elegans* strains or alternatively, commensal *E. coli*
429 strains employed in this study. Using a protein-embedding framework, this work supports
430 these claims as it identifies a broad repertoire of bacterial functions, spanning many COG
431 functional categories with known effects on host physiology, that are regulated at the level of
432 the bacterial pangenome. Among the most significantly enriched categories is proteolysis.
433 Notably, recent work has demonstrated that differences in bacterial-derived RNAs between *E.*
434 *coli* OP50 and HT115 can trigger a systemic response in *C. elegans* that protect against
435 protein aggregation during aging⁴². Likewise, the present study reveals pronounced
436 differences among *E. coli* strains (Extended Figure S4a) and strains belonging to bacterial
437 species from other phyla (Extended Figure S5a) in their ability to modulate the host ubiquitin–
438 proteasome system. Here, we demonstrate that key bacterial proteostasis regulators control
439 host UPS activity by modulating the availability of vitamin B12 and propionate, which in turn
440 dictates the flux through host propionate degradation pathways. Bacteria that produce or
441 efficiently scavenge B12 can control community composition and metabolic activity by
442 outcompeting B12-dependent neighbors^{43,44}. For example, B12 production by *Eubacterium*
443 *hallii* enables *Akkermansia muciniphila* to convert succinate to propionate, shifting succinate
444 levels, and thereby reshaping the surrounding metabolic network⁴⁵. Here, an unanticipated
445 mechanism is described in which the DnaK/J chaperone system and the ClpX protease act in
446 concert to fine tune B12 and propionate levels. While this regulatory axis may have evolved
447 primarily to modulate microbial community interactions, it also alters host proteostasis, giving
448 rise to what can be conceptualized as microbe–host “co-proteostasis” derived from microbe–
449 host co-metabolism cues.

450

451 MAIN REFERENCES

452

453

454 1 Samuel, B. S., Rowedder, H., Braendle, C., Felix, M. A. & Ruvkun, G. *Caenorhabditis*
455 *elegans* responses to bacteria from its natural habitats. *Proc Natl Acad Sci U S A* **113**,
456 E3941-3949 (2016). <https://doi.org/10.1073/pnas.1607183113>

457 2 Backes, C., Martinez-Martinez, D. & Cabreiro, F. C. *elegans*: A biosensor for host-
458 microbe interactions. *Lab Anim (NY)* **50**, 127-135 (2021).
459 <https://doi.org/10.1038/s41684-021-00724-z>

460 3 Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and
461 host metabolism. *Nature* **489**, 242-249 (2012). <https://doi.org/10.1038/nature11552>

462 4 Almeida, A. *et al.* A new genomic blueprint of the human gut microbiota. *Nature* **568**,
463 499-504 (2019). <https://doi.org/10.1038/s41586-019-0965-1>

464 5 Cummins, E. A., Hall, R. J., Connor, C., McInerney, J. O. & McNally, A. Distinct
465 evolutionary trajectories in the *Escherichia coli* pangenome occur within sequence
466 types. *Microb Genom* **8** (2022). <https://doi.org/10.1099/mgen.0.000903>

467 6 Touchon, M. *et al.* Phylogenetic background and habitat drive the genetic
468 diversification of *Escherichia coli*. *PLoS Genet* **16**, e1008866 (2020).
469 <https://doi.org/10.1371/journal.pgen.1008866>

470 7 Neve, I. A. A. *et al.* *Escherichia coli* Metabolite Profiling Leads to the Development of
471 an RNA Interference Strain for *Caenorhabditis elegans*. *G3 (Bethesda)* **10**, 189-198
472 (2020). <https://doi.org/10.1534/g3.119.400741>

473 8 Watson, E. *et al.* Metabolic network rewiring of propionate flux compensates vitamin
474 B12 deficiency in *C. elegans*. *eLife* **5** (2016). <https://doi.org/10.7554/eLife.17670>

475 9 Revtovich, A. V., Lee, R. & Kirienko, N. V. Interplay between mitochondria and diet
476 mediates pathogen and stress resistance in *Caenorhabditis elegans*. *PLoS Genet* **15**,
477 e1008011 (2019). <https://doi.org/10.1371/journal.pgen.1008011>

478 10 Galardini, M. *et al.* Phenotype inference in an *Escherichia coli* strain panel. *eLife* **6**
479 (2017). <https://doi.org/10.7554/eLife.31035>

480 11 Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A. & Tikhonov, M. Functional
481 biology in its natural context: A search for emergent simplicity. *eLife* **10** (2021).
482 <https://doi.org/10.7554/eLife.67646>

483 12 Elnaggar, A. *et al.* ProtTrans: Toward Understanding the Language of Life Through
484 Self-Supervised Learning. *IEEE Trans Pattern Anal Mach Intell* **44**, 7112-7127 (2022).
485 <https://doi.org/10.1109/TPAMI.2021.3095381>

486 13 Holdorf, A. D. *et al.* WormCat: An Online Tool for Annotation and Visualization of
487 *Caenorhabditis elegans* Genome-Scale Data. *Genetics* **214**, 279-294 (2020).
488 <https://doi.org/10.1534/genetics.119.302919>

489 14 Tantoso, E., Eisenhaber, B., Sinha, S., Jensen, L. J. & Eisenhaber, F. About the dark
490 corners in the gene function space of *Escherichia coli* remaining without illumination
491 by scientific literature. *Biol Direct* **18**, 7 (2023). <https://doi.org/10.1186/s13062-023-00362-0>

493 15 Barrios-Nunez, I. *et al.* Decoding functional proteome information in model organisms
494 using protein language models. *NAR Genom Bioinform* **6**, lqae078 (2024).
495 <https://doi.org/10.1093/nargab/lqae078>

496 16 Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.
497 *Bioinformatics* **30**, 1236-1240 (2014). <https://doi.org/10.1093/bioinformatics/btu031>

498 17 Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.
499 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain
500 Prediction at the Metagenomic Scale. *Mol Biol Evol* **38**, 5825-5829 (2021).
501 <https://doi.org/10.1093/molbev/msab293>

502 18 Sanderson, T., Bileschi, M. L., Belanger, D. & Colwell, L. J. ProtelInfer, deep neural
503 networks for protein functional inference. *Elife* **12** (2023).
<https://doi.org/10.7554/eLife.80942>

504 19 Littmann, M., Heinzinger, M., Dallago, C., Olenyi, T. & Rost, B. Embeddings from deep
505 learning transfer GO annotations beyond homology. *Sci Rep* **11**, 1160 (2021).
<https://doi.org/10.1038/s41598-020-80786-0>

506 20 Finger, F. *et al.* Olfaction regulates organismal proteostasis and longevity via
507 microRNA-dependent signaling. *Nat Metab* **1**, 350-359 (2019).
<https://doi.org/10.1038/s42255-019-0033-z>

508 21 Cabreiro, F. *et al.* Metformin retards aging in *C. elegans* by altering microbial folate and
509 methionine metabolism. *Cell* **153**, 228-239 (2013).
<https://doi.org/10.1016/j.cell.2013.02.035>

510 22 Watson, E. *et al.* Interspecies systems biology uncovers metabolites affecting *C.*
511 *elegans* gene expression and life history traits. *Cell* **156**, 759-770 (2014).
<https://doi.org/10.1016/j.cell.2014.01.047>

512 23 Segref, A. *et al.* Pathogenesis of human mitochondrial diseases is modulated by
513 reduced activity of the ubiquitin/proteasome system. *Cell Metab* **19**, 642-652 (2014).
<https://doi.org/10.1016/j.cmet.2014.01.016>

514 24 Zhang, F. *et al.* *Caenorhabditis elegans* as a Model for Microbiome Research. *Front
515 Microbiol* **8**, 485 (2017). <https://doi.org/10.3389/fmicb.2017.00485>

516 25 Segref, A., Torres, S. & Hoppe, T. A screenable *in vivo* assay to study proteostasis
517 networks in *Caenorhabditis elegans*. *Genetics* **187**, 1235-1240 (2011).
<https://doi.org/10.1534/genetics.111.126797>

518 26 Essmann, C. L. *et al.* Mechanical properties measured by atomic force microscopy
519 define health biomarkers in ageing *C. elegans*. *Nat Commun* **11**, 1043 (2020).
<https://doi.org/10.1038/s41467-020-14785-0>

520 27 Ravanelli, S. *et al.* Reprograming of proteasomal degradation by branched chain
521 amino acid metabolism. *Aging Cell* **21**, e13725 (2022).
<https://doi.org/10.1111/ace.13725>

522 28 Celia, H. *et al.* Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD
523 provides information on structure and stoichiometry. *Commun Biol* **2**, 358 (2019).
<https://doi.org/10.1038/s42003-019-0604-2>

524 29 Gonzalez-Garcia, R. A. *et al.* Awakening sleeping beauty: production of propionic acid
525 in *Escherichia coli* through the sbm operon requires the activity of a methylmalonyl-
526 CoA epimerase. *Microb Cell Fact* **16**, 121 (2017). <https://doi.org/10.1186/s12934-017-0735-4>

527 30 Ponomarova, O. *et al.* A D-2-hydroxyglutarate dehydrogenase mutant reveals a critical
528 role for ketone body metabolism in *Caenorhabditis elegans* development. *PLoS Biol*
529 **21**, e3002057 (2023). <https://doi.org/10.1371/journal.pbio.3002057>

530 31 Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species:
531 interpreting strains in microbiomes. *Nat Rev Microbiol* **18**, 491-506 (2020).
<https://doi.org/10.1038/s41579-020-0368-1>

532 32 Valles-Colomer, M. *et al.* The person-to-person transmission landscape of the gut and
533 oral microbiomes. *Nature* **614**, 125-135 (2023). <https://doi.org/10.1038/s41586-022-05620-1>

534 33 Martinez-Martinez, D. *et al.* Chemotherapy modulation by a cancer-associated
535 microbiota metabolite. *Cell Syst* **16**, 101397 (2025).
<https://doi.org/10.1016/j.cels.2025.101397>

536 34 Andreu-Sanchez, S. *et al.* Global genetic diversity of human gut microbiome species
537 is related to geographic location and host health. *Cell* **188**, 3942-3959 e3949 (2025).
<https://doi.org/10.1016/j.cell.2025.04.014>

538 35 Costea, P. I. *et al.* Subspecies in the global human gut microbiome. *Mol Syst Biol* **13**,
539 960 (2017). <https://doi.org/10.15252/msb.20177589>

555 36 Lin, Z. *et al.* Evolutionary-scale prediction of atomic-level protein structure with a
556 language model. *Science* **379**, 1123-1130 (2023).
<https://doi.org/10.1126/science.ade2574>

557 37 Odrzywólej, K. *et al.* Deep embeddings to comprehend and visualize microbiome
559 protein space. *Sci Rep* **12**, 10332 (2022). <https://doi.org/10.1038/s41598-022-14055-7>

561 38 Martinez-Miguel, V. E. *et al.* Increased fidelity of protein synthesis extends lifespan.
562 *Cell Metab* **33**, 2288-2300 e2212 (2021). <https://doi.org/10.1016/j.cmet.2021.08.017>

563 39 Scott, T. A. *et al.* Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in *C.*
564 *elegans*. *Cell* **169**, 442-456 e418 (2017). <https://doi.org/10.1016/j.cell.2017.03.040>

565 40 Schifano, E. *et al.* Virulence behavior of uropathogenic *Escherichia coli* strains in the
566 host model *Caenorhabditis elegans*. *Microbiologyopen* **8**, e00756 (2019).
<https://doi.org/10.1002/mbo3.756>

567 41 Xiao, R. *et al.* RNAi Interrogation of Dietary Modulation of Development, Metabolism,
569 Behavior, and Aging in *C. elegans*. *Cell Rep* **11**, 1123-1133 (2015).
<https://doi.org/10.1016/j.celrep.2015.04.024>

571 42 Kyriakakis, E. *et al.* Bacterial RNA promotes proteostasis through inter-tissue
572 communication in *C. elegans*. *Nat Commun* **16**, 8650 (2025).
<https://doi.org/10.1038/s41467-025-63987-x>

574 43 Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut
575 microbes use multiple transporters to distinguish vitamin B(1)(2) analogs and compete
576 in the gut. *Cell Host Microbe* **15**, 47-57 (2014).
<https://doi.org/10.1016/j.chom.2013.12.007>

578 44 Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut
579 microbial ecology. *Cell Metab* **20**, 769-778 (2014).
<https://doi.org/10.1016/j.cmet.2014.10.002>

581 45 Belzer, C. *et al.* Microbial Metabolic Networks at the Mucus Layer Lead to Diet-
582 Independent Butyrate and Vitamin B(12) Production by Intestinal Symbionts. *mBio* **8**
583 (2017). <https://doi.org/10.1128/mBio.00770-17>

584 46 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
585 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
<https://doi.org/10.1186/s13059-014-0550-8>

587 47 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
588 and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).
<https://doi.org/10.1093/nar/gkv007>

590 48 Amezquita, R. A. *et al.* Orchestrating single-cell analysis with Bioconductor. *Nat
591 Methods* **17**, 137-145 (2020). <https://doi.org/10.1038/s41592-019-0654-x>

592 49 Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using
593 MinHash. *Genome Biol* **17**, 132 (2016). <https://doi.org/10.1186/s13059-016-0997-x>

594 50 Waters, N. R., Abram, F., Brennan, F., Holmes, A. & Pritchard, L. Easy phylotyping of
595 *Escherichia coli* via the EzClermont web app and command-line tool. *Access Microbiol*
596 **2**, acmi000143 (2020). <https://doi.org/10.1099/acmi.0.000143>

597 51 Beghain, J., Bridier-Nahmias, A., Le Nagard, H., Denamur, E. & Clermont, O.
598 ClermonTyping: an easy-to-use and accurate in silico method for *Escherichia* genus
599 strain phylotyping. *Microb Genom* **4** (2018). <https://doi.org/10.1099/mgen.0.000192>

600 52 Schwengers, O. *et al.* Bakta: rapid and standardized annotation of bacterial genomes
601 via alignment-free sequence identification. *Microb Genom* **7** (2021).
<https://doi.org/10.1099/mgen.0.000685>

603 53 Tonkin-Hill, G. *et al.* Producing polished prokaryotic pangenomes with the Panaroo
604 pipeline. *Genome Biol* **21**, 180 (2020). <https://doi.org/10.1186/s13059-020-02090-4>

605 54 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
606 improvements in performance and usability. *Mol Biol Evol* **30**, 772-780 (2013).
<https://doi.org/10.1093/molbev/mst010>

608 55 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and
609 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol*
610 *Evol* **32**, 268-274 (2015). <https://doi.org/10.1093/molbev/msu300>

611 56 Baba, T. *et al.* Construction of Escherichia coli K-12 in-frame, single-gene knockout
612 mutants: the Keio collection. *Mol Syst Biol* **2**, 2006 0008 (2006).
613 <https://doi.org/10.1038/msb4100050>

614 57 Doublet, B. *et al.* Antibiotic marker modifications of lambda Red and FLP helper
615 plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR
616 products in multidrug-resistant strains. *J Microbiol Methods* **75**, 359-361 (2008).
617 <https://doi.org/10.1016/j.mimet.2008.06.010>

618 58 Chung, C. T., Niemela, S. L. & Miller, R. H. One-step preparation of competent
619 Escherichia coli: transformation and storage of bacterial cells in the same solution.
620 *Proc Natl Acad Sci U S A* **86**, 2172-2175 (1989).
621 <https://doi.org/10.1073/pnas.86.7.2172>

622 59 Ikeda, H. & Tomizawa, J. I. Transducing fragments in generalized transduction by
623 phage P1. 3. Studies with small phage particles. *J Mol Biol* **14**, 120-129 (1965).
624 [https://doi.org/10.1016/s0022-2836\(65\)80234-0](https://doi.org/10.1016/s0022-2836(65)80234-0)

625 60 Kitagawa, M. *et al.* Complete set of ORF clones of Escherichia coli ASKA library (a
626 complete set of E. coli K-12 ORF archive): unique resources for biological research.
627 *DNA Res* **12**, 291-299 (2005). <https://doi.org/10.1093/dnares/dsi012>

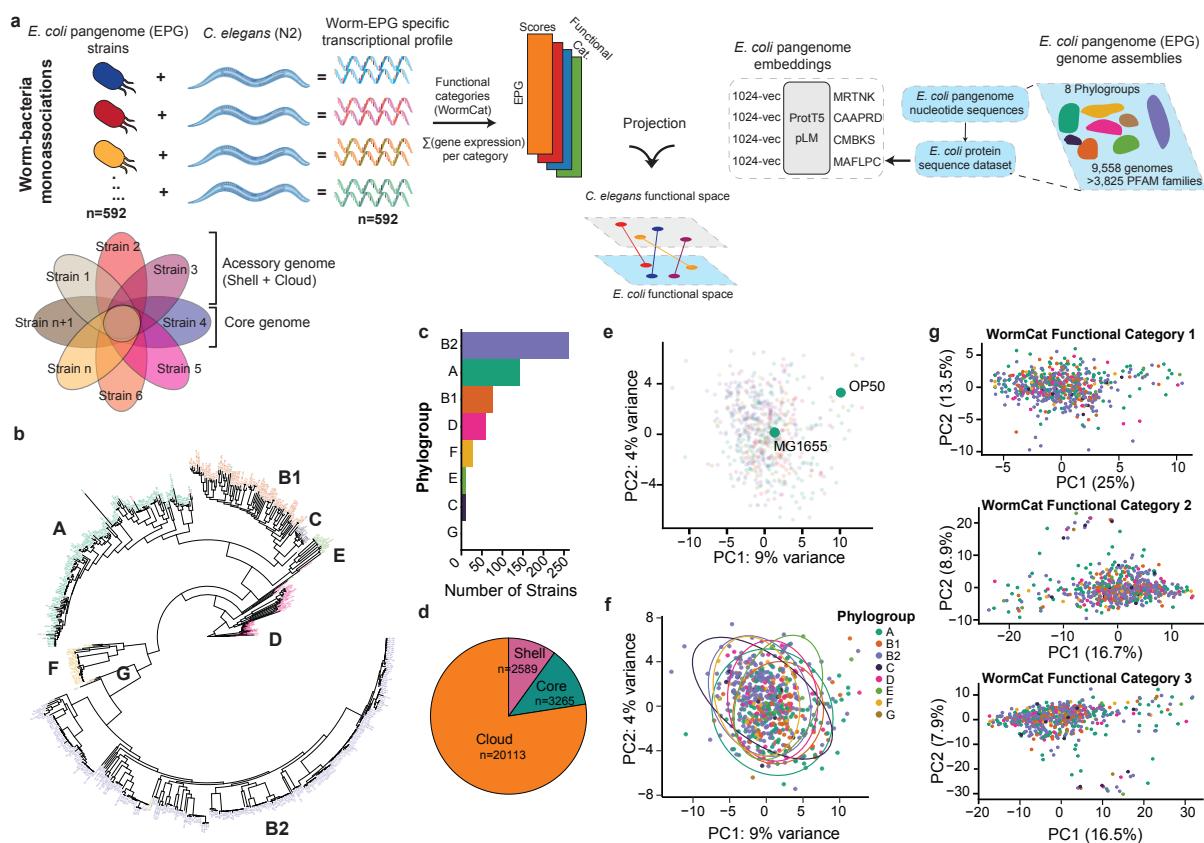
628 61 Yang, C., Sun, W. & Ao, X. Bacterial inactivation, DNA damage, and faster ATP
629 degradation induced by ultraviolet disinfection. *Frontiers of Environmental Science &*
630 *Engineering* **14** (2019). <https://doi.org/10.1007/s11783-019-1192-6>

631

632

633 **MAIN FIGURES**

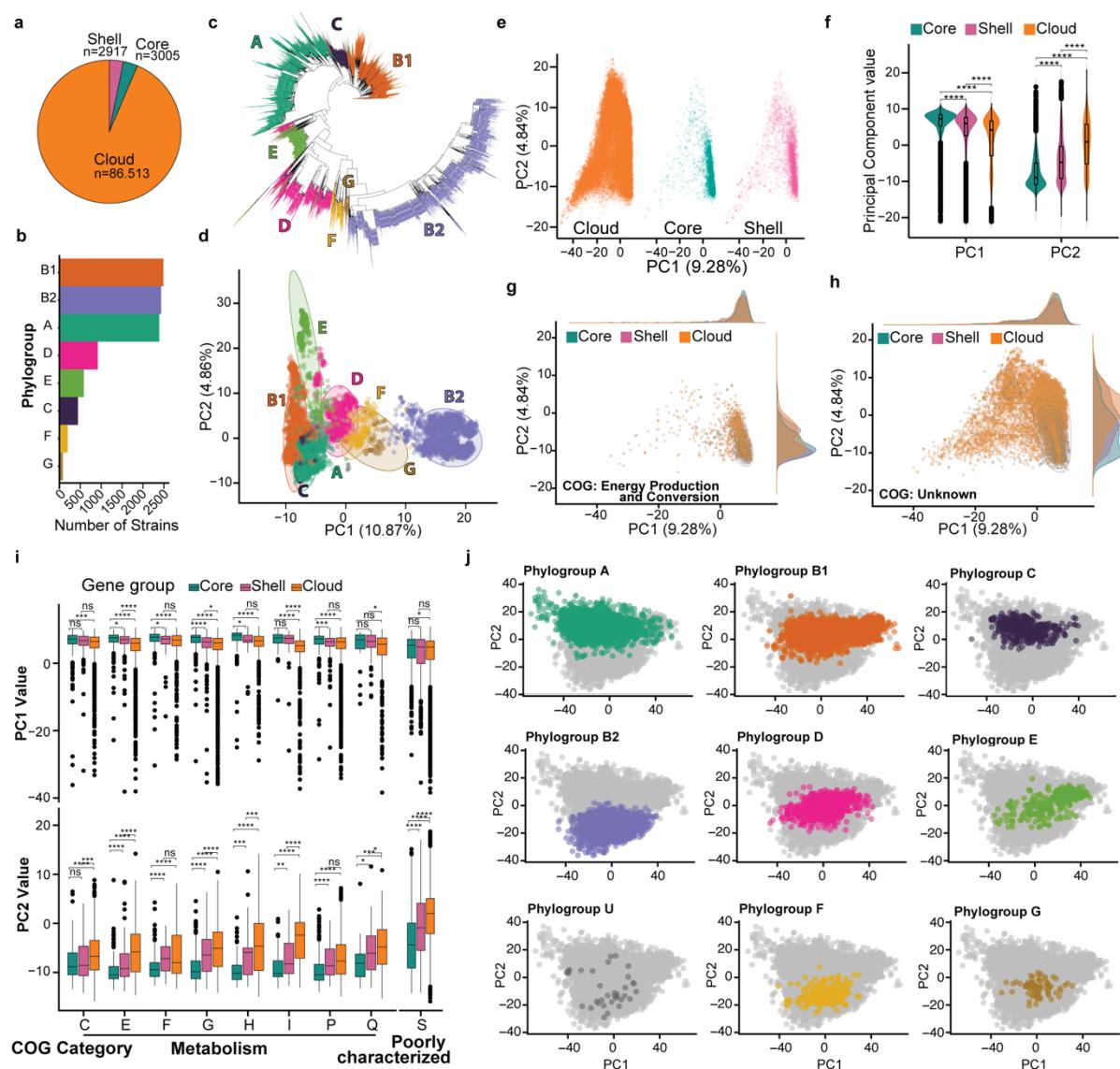
634 **Figure 1**



635

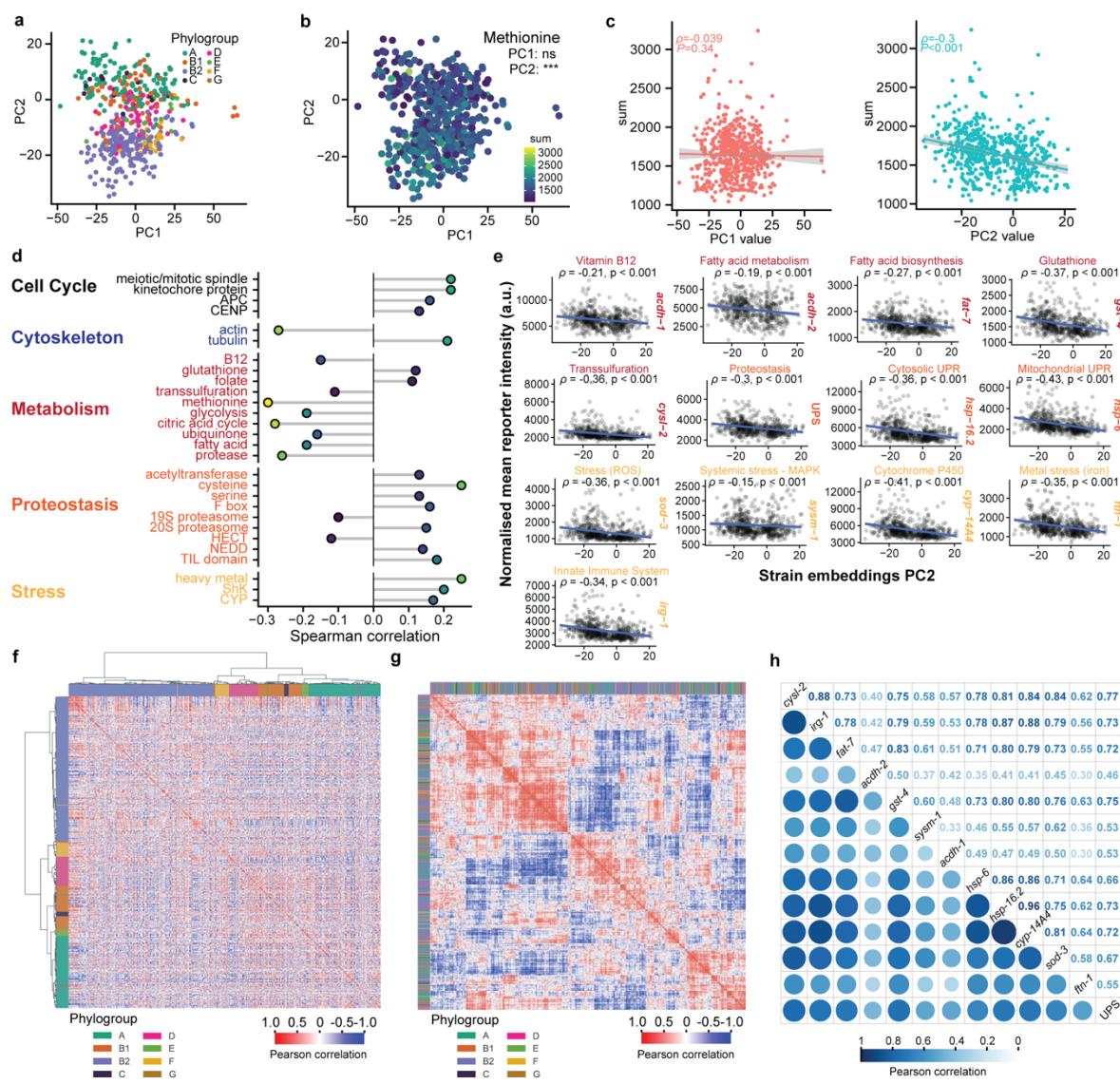
636 **Figure 2**

637



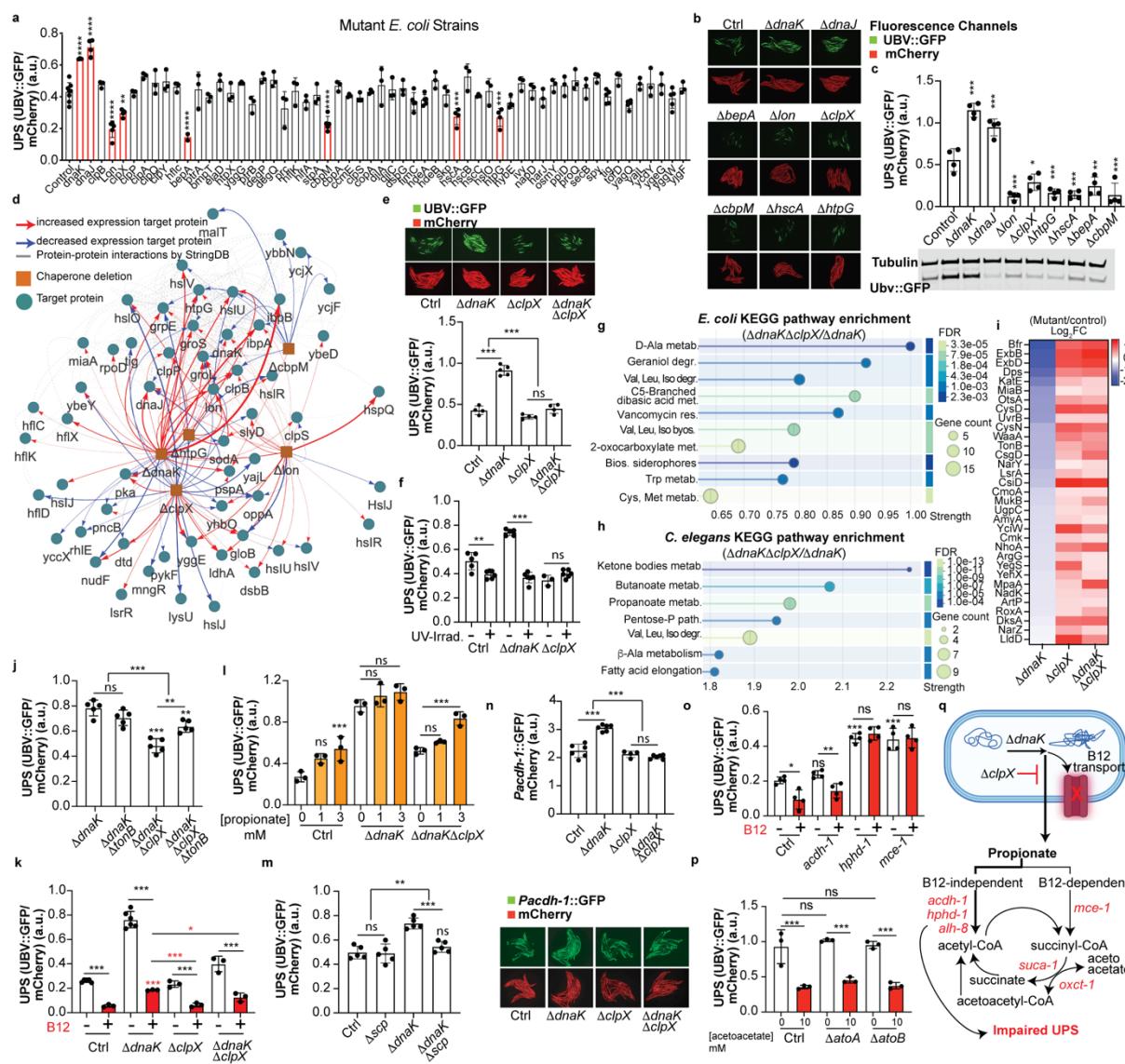
638

639 **Figure 3**



640

641 **Figure 4**



642

643 **FIGURE LEGENDS**

644

645 **Figure 1. The physiology of *C. elegans* is regulated at the *E. coli* pangenome scale.** **a**,
646 Schematic representation of experimental and analytical workflow: *C. elegans* transcriptomes
647 were profiled for each of the 592 *E. coli* strains and then summarized in WormCat functional
648 categories. The *E. coli* pangenome was calculated for 9,558 strains and its linear reference
649 was used to geometrically represent the functional potential per strain with the pLM ProtT5.
650 Both biological layers were used to map host-microbe functional landscapes. **b**, Phylogenetic
651 tree computed from the core genome fraction of the 592 *E. coli* strains panel with tips colored
652 following the major phylogroups. The tree branch length reflects genetic distances. **c**, Pie chart
653 showing the distribution of gene families belonging to the core (>95% presence), shell (95%
654 to 15% presence), or cloud (<15% presence) genome across the 592 *E. coli* strains. **d**,
655 Distribution of *E. coli* phylogroups across the 592 *E. coli* strains. **e**, Representation of the
656 transcriptional distance between two common *E. coli* lab strains belonging to the same
657 phylogroup, MG1655 and OP50, which are known to induce differences in the worm
658 physiology. **f**, Principal component analysis (PCA) of the whole *C. elegans* transcriptional
659 profiles. Each point representing animals raised on a single *E. coli* strain and colored by the
660 phylogroup of the corresponding strain. **g**, PCA of WormCat level 1, level 2 and level 3
661 categories, depicting the functional landscape of *C. elegans* transcriptional responses to the
662 *E. coli* strain panel. Each point represents the WormCat functional category for a given strain
663 and colored by the phylogroup of the corresponding *E. coli* strain.

664

665 **Figure 2. The functional landscape encoded in the *E. coli* pangenome can be leveraged**
666 **to create a functional map of the species.** **a**, Pie chart showing the number of gene families
667 assigned to the core (>95% presence), shell (95% to 15% presence), or cloud (<15%
668 presence) genome across the 9 558 *E. coli* strains. **b**, Distribution of *E. coli* phylogroups across
669 the 9 558 *E. coli* strains. **c**, Phylogenetic tree computed from a set of 275 conserved genes
670 from the core genome of the 9,558 *E. coli* strains. Tips are colored following the major
671 phylogroups and the tree branch lengths reflect genetic distances. **d**, PCA of gene
672 presence/absence across the cloud genome of the *E. coli* strain panel. Each point represents
673 a strain, colored by phylogroup. **e**, PCA projection of protein embeddings with
674 Orange/Pink/Green representing genes belonging to the cloud/shell/core genome
675 respectively. **f**, Violin plots with box plots embedded representing the distribution from the
676 genome fractions per principal component (n = 92,244; p<0.001, One-way ANOVA). **g**, PCA
677 projection of protein embeddings for genes belonging to the COG category C, Energy

678 Production and Conversion. **h**, PCA projection of protein embeddings for genes belonging to
679 the COG category S, Unknown. **i**, Box plots of the PCA coordinates per COG category
680 belonging to the major category of Metabolism and Poorly Characterized (n = 33-18,050). (NS
681 P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, two-tailed pairwise T-test with BH). **j**, PCA
682 projection of the 9,558 *E. coli* strain embeddings, colored and split by their respective
683 phylogroups.

684

685 **Figure 3. *E. coli* strain embeddings map bacterial functional landscape onto host**
686 **functional responses.** **a**, PCA projection for the 592 *E. coli* strain embeddings included in the
687 RNA-seq screen with points colored by phylogroup. **b**, PCA projection of the 592 *E. coli* strain
688 embeddings with dots colored by Methionine functional scores derived from *C. elegans*
689 transcriptomes. (n = 592, Spearman correlation, *P < 0.05, **P < 0.01, ***P < 0.001). **c**,
690 Spearman correlation plots for the two Principal Components with the Methionine functional
691 scores. Spearman correlation coefficient is represented as the p value (n = 592). **d**, Bubble
692 plot summarizing Spearman correlation coefficients (ρ) for significant WormCat functional
693 categories and PC2 of the strain-embedding PCA across the 592 strains. **e**, Spearman
694 correlations between the PC2 of the strain embeddings PCA and biologically relevant *C.*
695 *elegans* gene reporter phenotypes. Each facet shows the relationship between PC2 of the *E.*
696 *coli* strain-embedding PCA (x-axis) and normalized mean reporter intensity from the high-
697 throughput imaging screen (y-axis) for each *C. elegans* gene reporter. Spearman correlation
698 coefficients (ρ) and significance are represented for each case. **f-g**, Strain-strain Pearson
699 correlation heat map derived from the *C. elegans* gene reporter. Strains are clustered by their
700 phylogenetic distances (**f**) or by their reporter activity (**g**) and colored by phylogroup (n = 589).
701 **h**, Pearson correlation between *C. elegans* gene reporter data shown as circles (lower
702 triangle) and correlation values (upper triangle) (n = 589).

703

704 **Figure 4. Proteostasis state in *E. coli* regulates proteostasis regulation at the host level.**
705 **a**, Normalized brightness of the worm reporter UBV::GFP as a ratio of GFP over mCherry
706 (UPS fluorescence) fed on *E. coli* knock-out for proteins involved in bacterial proteostasis
707 (n=3-8). **b**, Fluorescent microscope images of the worm reporters UBV::GFP fed on *E. coli*
708 significant mutants identified in **a**. **c**, GFP and tubulin (housekeeping protein) quantification
709 with western blot normalized over mCherry for the significant proteins (n=4). **d**, Bi-partite
710 network representation of the proteome derived from the KO *E. coli* gene $\Delta dnaK$, Δlon , $\Delta clpX$
711 and $\Delta cbpM$ compared to the control strain. Nodes are bacterial strains (orange) and significant
712 proteins (grey). Edges represent protein expression (red for increased, blue for decreased)

713 and protein-protein interactions from STRING (grey). **e**, Normalized UPS fluorescence of
714 worms fed on BW25113 and mutants $\Delta dnaK$, $\Delta clpX$ and $\Delta dnaK\Delta clpX$ (n=4). **f**, Normalized
715 UPS fluorescence of worms fed on BW25113 and mutants $\Delta dnaK$ and $\Delta clpX$ living bacteria (-
716) and UV-irradiated bacteria (+) (n=5). **g,h** KEGG Pathways enriched from the *E. coli* (**g**) and
717 *C. elegans* (**h**) proteomics from the $\Delta dnaK\Delta clpX$ vs Δdna comparison. **i**, Heat map of the
718 significant protein expression from the $\Delta dnaK$ versus $\Delta clpX$ and $\Delta dnaK\Delta clpX$. **j**, Normalized
719 UPS fluorescence of worms fed on *E. coli* mutants $\Delta dnaK$, $\Delta dnaK\Delta tonB$, $\Delta dnaK\Delta clpX$,
720 $\Delta dnaK\Delta clpX\Delta tonB$ (n=5). **k**, Normalized UPS fluorescence of worms fed on *E. coli* BW25113,
721 $\Delta dnaK$, $\Delta clpX$, $\Delta dnaK\Delta clpX$ in the presence (+) or absence (-) of vitamin B12 (150 nM) (n=3-
722 6). **l**, Normalized UPS fluorescence of worms fed on BW25113, $\Delta dnaK$ and $\Delta dnaK\Delta clpX$
723 supplemented with propionate (0, 1 and 3 mM) (n=3). **m**, Normalized UPS fluorescence of
724 worms fed on BW25113 and strains Δscp , $\Delta dnaK$, $\Delta dnaK\Delta scp$ (n=5). **n**, Normalized UPS
725 fluorescence of worms fed on BW25113 and strains $\Delta dnaK$, $\Delta clpX$ and $\Delta dnaK\Delta clpX$ (n=4-6).
726 **o**, Normalized UPS fluorescence of worms fed on BW25113 for wild-type *C. elegans* N2 (Ctrl)
727 and worm mutants *acd-1(0)*, *hphd-1(0)*, *mce-1(0)* in the presence (+) and absence (-) of
728 vitamin B12 (150 nM) (n=4). **p**, Normalized UPS fluorescence of worms fed on BW25113 and
729 strains $\Delta atoA$, $\Delta atoB$ with and without acetoacetate (10mM) (n=3). **q**, Scheme showing that
730 proteostasis regulation at the bacterial level regulates the host response and proteostasis
731 status via propionate and vitamin B12. Stats correspond to comparison against the control
732 (one-way ANOVA) and between nested conditions (two-way ANOVA), represented as *P <
733 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05.

734

735

736 **METHODS**

737

738 **RNA sequencing of *C. elegans* fed on PG *E. coli* strains**

739 Around 30 *C. elegans* animals were grown per well in 96-well microtiter plates, each well
740 containing NGM seeded with a distinct *E. coli* strain. On day 1 of adulthood the worms were
741 transferred in a high-throughput manner to clean 96 well plates using INTEGRA Viaflo 96
742 liquid handler. Worms were washed twice with RNase-free water to remove bacterial traces
743 and flash-frozen in liquid nitrogen. For lysis, we used bead-based mechanical disruption
744 (Bertin Technologies) in RNA lysis buffer (Zymo Research) and on a bench top Eppendorf
745 Thermomixer C at 2000rpm for 20 min at 4°C. RNA was concentrated and purified with the
746 RNA Clean & Concentrator-96 kit (Zymo Research). Samples were eluted into microtiter plates
747 and stored at -80°C prior to library preparation. We quantified and checked the integrity of the
748 RNA and selected batches of 48 RNA samples with similar quality to ensure uniform RNA
749 input. To obtain comprehensive coverage of expressed genes in the *C. elegans* host, we
750 employed Lexogen QuantSeq-Pool Sample-Barcoded 3' mRNA-Seq Library Preparation.
751 Each RNA sample was labelled with a unique 12-nucleotide i1 sequence barcode before
752 conversion to cDNA and pooling. Before amplification, each cDNA pool was dual-indexed with
753 12-nucleotide i5/i7 index sequences. To validate the RNA extraction and library preparation
754 we prepared a test-pool library from conventional *E. coli* laboratory strains. We performed pair-
755 ended sequencing of the test pool on an Illumina MiSeq sequencer and obtained successful
756 demultiplexing. In total, we prepared 16 libraries that were normalized for final pool sequencing
757 based on library quantification by Qubit 3.0 fluorometer and average library size measured by
758 TapeStation 4200. To remove *E. coli* phylogroup representation biases we randomly
759 distributed strains in the different libraries.

760

761 Sequencing was performed on an Illumina MiSeq. Sequences were demultiplexed using
762 DRAGEN GenerateFastQ (v3.7.4) by using the i5/i7 barcodes to separate the different
763 libraries. Each library was further demultiplexed by using idemux (v.0.1.6) and by using each
764 library and sample i1 barcode identifiers. Sequences were quality-cleaned with trimmomatic
765 (v.0.39), removing Illumina adapters and dropping sequences below 65 nucleotides. Lexogen
766 recommends trimming the first 12 nucleotides of each read, a step that can be avoided if the
767 aligner used to map the reads can perform soft-clipping, which was our case with salmon
768 (v.1.10.1). Outlier samples with extremely low read count were discarded at this point. Quality-
769 filtered reads were then filtered to exclude samples with less than 4x10⁵ reads, resulting in
770 the discard of 59 samples mainly from libraries 14 and 15. 661 samples were kept for posterior
771 analyses (606 unique strains). Reads have been mapped to the cDNA of the *C. elegans*
772 reference genome in Ensembl (version 111) with salmon (v.1.10.2), which performs soft-

773 clipping, to build the counts matrix and then imported to R with tximport (v.1.28). were
774 analyzed with DESeq2⁴⁶ (v.1.40.1) using the phylogroup as the main group and using the
775 library information to avoid possible batch effect Genes that had less than 10 reads in total
776 were discarded. PCA calculations were performed with the plotPCA function from DESeq2
777 with the data transformed with the vst function. Outliers from the PCA plot from normalized
778 counts but not batch-corrected were removed from the analysis. Batch correction was
779 performed with the removeBatchEffect function from limma⁴⁷ (v.3.64.1). Per-gene variance
780 was modelled with the function modelGeneVar from the scran package⁴⁸ (v.1.36.0).

781

782 To build the transcriptional landscapes from the worm, the curated database from WormCat¹³
783 containing categories at level 1 to 3 was downloaded (Nov-2021 version). The genes
784 belonging to each category per level were summed by using the normalized and batch-
785 corrected reads from the transcriptional profile. A single value was obtained per category, level
786 and strain, which was used for downstream analyses.

787

788 ***E. coli* strain landscape selection**

789 The *E. coli* strains were selected from the NCBI genome database. The metadata was
790 downloaded on January 11th, 2024, and was downloaded with the NCBI dataset download
791 tool (v. 16.2.0). The strains were filtered based on the criteria described here. Genomes that
792 were not at the assembly level of “chromosome”, “complete genome” or “scaffold” were
793 removed. The scaffold N50 was used to filter out genomes with a value lower than 150K.
794 CheckM metrics were used to remove genomes with a completeness lower than 95% and a
795 contamination higher than 1%. Mash distances (mash v. 1.1)⁴⁹ were calculated pairwise
796 between all genomes, and those strains whose mean distances were higher than 0.05 were
797 removed. Finally, genomes with a sequence length greater than 7Mbp, and/or genomes with
798 a contig count higher than 300 were removed. This resulted in 8,829 assemblies passing all
799 filters. 517 strains were added from the EcoRef collection¹⁰, where evolution-related strains
800 were discarded from the analysis. 212 commensal strains were added from human isolates
801 from Australia⁶. Phylogroups were assigned with the EzClermont v. 0.7.0 tool⁵⁰ (tool based on
802 the approach from ClermontTyping⁵¹), and genomes belonging to class cryptic, U/cryptic and
803 fails were discarded. The final number of genomes was 9,558 assemblies.

804

805 **Gene annotation and pangenome analysis**

806 Genome annotation was performed with Bakta⁵² (v. 1.9.3) using the full database (v. 5.1) using
807 by default parameters. The pangenome was analyzed with Panaroo⁵³, selecting a strict clean
808 mode and removing invalid genes. Due to the complexity of this pangenome and the
809 computation time, the pangenome was split into 5 parts containing approximately 2000

810 random genomes each. Each pangenome was calculated using the same parameters. The
811 output from the 5 calculations was merged into the final output using the Panaroo-merge
812 function from the main pipeline. The reference sequences from the gene families were then
813 translated into proteins (using a custom Python script with biopython v. 1.84). Gene
814 presence/absence matrix was used to calculate the Principal Component Analysis shown in
815 the main text by using the PCA function from scikit-learn v. 1.5.1. The pangenome analysis
816 from the strains used for the *C. elegans* transcriptome and the reporter screening was
817 performed independently by leveraging the annotations obtained with Bakta and running the
818 pipeline as a single process this time (592 strains in total).

819

820 Gene presence/absence matrix was used to generate the accumulation curve (ACC) for the
821 full *E. coli* panel of 9,558 strains, and to calculate the Heap's law. The ACC was generated by
822 first removing gene families that were present in more than 99% of the strains, then dividing
823 the total gene count into 50 sampling points and randomly picking genomes for each sampling
824 point to count the number of genes. This process was iterated over 5 times. Heap's law was
825 calculated to fit the following equation:

$$P = k * N^\gamma$$

826 P is the pangenome size, N is the number of genomes, and k and γ are the parameters to fit.
827 Heap's law parameters were fitted using the average of the ACC data per point with the nls
828 function in R.

829

830 Pairwise strain genetic similarity was measured as the Jaccard similarity between every pair
831 of strains included in the study. It was calculated as the shared genetic content divided by the
832 union of their genetic content between each strain pair.

833

834 **Phylogeny**

835 From the core genome extracted from Panaroo, a subset of 275 genes present in all strains
836 was used to build the phylogenetic tree for the full *E. coli* panel. To avoid multicopy bias, only
837 one gene per strain was kept for the alignment. For the laboratory strains included in the
838 smaller panel we used the full core genome. The alignment was done using mafft⁵⁴ (v. 7. 526),
839 and the tree was constructed with IQ-Tree⁵⁵ (v. 2.3.6) with the GTR+I+G substitution model.

840

841 **GO term prediction**

842 **Sequence-based methods**

843 Proteins were classified using two of the most popular sequence-based methods used in the
844 community: InterPro and eggNOG. Search in the InterPro databases was done using
845 interproscan v. 5.59-91.0¹⁶ with by default parameters. The search in the eggNOG database

847 was done using eggNOG-mapper v. 2.1.12¹⁷ with MMseqs2 to look for novel families options
848 enabled. Results from both methods were filtered to remove entries that had an E-value larger
849 than 1e-5.

850

851 **Machine learning methods**

852 Reference genes from Panaroo were split into 4 smaller files to fit in memory. Proteininfer¹⁸
853 source code was downloaded from github and function prediction was done by using 5
854 ensemble models and a reporting threshold of 0.3.

855 The reference genes from Panaroo were translated into proteins and sequences were
856 clustered with CD-HIT v. 4.8.1 (similarity threshold of 0.98) to remove similar sequences from
857 the dataset, resulting in 55,942 unique clusters. The resulting file was split into 20 smaller files
858 to fit into memory. Proteins were embedded with bio-embeddings pipeline (v.0.2.2), by using
859 the model ProtT5-XL-U50¹² in half-precision mode. Proteins larger than 3,000 amino acids
860 were discarded to fit in memory. Transfer learning was done using available pipelines under
861 bio-embeddings that used goPredSim¹⁹, using Euclidean distances and a k-nearest-neighbors
862 of 3. ProtT5 h5 file was used as a reference with GOA annotations from 2022. Proteininfer,
863 protein embeddings and transfer learning were carried in a computer with 32Gb of RAM and
864 an RTX 4080 GPU with 16Gb of memory.

865

866 **Information content calculation**

867 To calculate the information content (IC) of the GO terms predicted by the different tools, we
868 used an adaptation of the method from Barrios-Nuñez *et al*¹⁵. Given that GO terms have a
869 hierarchical structure, the deeper nodes from the branch will contain a higher functional
870 information. Considering that having a deep node in the branch is less likely than to have a
871 higher node with less information, we can approximate the information content of each node
872 by the negative logarithm of the probability for that node to be inferred:

873

$$874 \quad IC = \log_2(p(t))$$

875

876 Where p(t) is the probability for that node, which can be calculated as:

877

$$878 \quad p(t) = 1 - \frac{\text{child nodes}}{\text{child nodes} + \text{ancestor nodes}}$$

879

880 IC was calculated by joining all the GO term predictions together to create a joint library of
881 terms for the pangenome. Given that we lack a pre-computed list of GO terms with their
882 probabilities as exist for reference organisms, we had to calculate these probabilities from

883 scratch. We joined together all GO term predictions from the 4 methods and kept the uniquely
884 present GO terms. This allowed us to create a database whereby to filter the resulting steps.
885 To calculate the number of ancestors and child nodes from each term, OWLTools was used
886 (release 2024-06-12). The database used is the go-basic.obo from geneontology.org
887 (accessed in October 2024). From the joint set of unique GO terms we used the OWLTools-
888 Runner function to get both the ancestors and descendants from each node. As the
889 descendants from a node, especially from the ones up in the tree, can have many different
890 child nodes depending on the final function, we removed all the GO terms that were not
891 present in our joint dataset. The probability was calculated as defined but corrected as $p(t) =$
892 $p(t) \left(\frac{1}{\text{ancestor}}\right)$ for the cases where no descendant was kept in the list, but the GO term did not
893 reach the bottom of the branch from the obo database.

894

895 **Strain embeddings calculation**

896 Strain embeddings were calculated based on the gene presence/absence matrix generated
897 by Panaroo, the protein embeddings generated by the pLM model ProtT5-XL-BFD, and the
898 number of genes per strain. To calculate any of the different strain embeddings versions
899 described below, we excluded the core genome set of genes, as they were not useful given
900 that all strains shared them.

901

902 Strain embeddings were generated using three distinct aggregation methods: 1) direct
903 summation via matrix multiplication; 2) simple averaging, normalized by the gene count per
904 strain to mitigate genome size bias; 3) weighted averaging, which employs an Inverse Gene
905 Frequency (IGF) metric. The three versions can be visualized in Extended Data Fig. S3a, the
906 strain embeddings have been uploaded to Zenodo (<https://doi.org/10.5281/zenodo.18221759>)

907

908 **Matrix multiplication**

909 The simplest form was calculated by multiplying the presence/absence matrix with the
910 embedding matrix with the following form:

$$911 \quad S = A^T \cdot E$$

912 Where A is the binary matrix of gene presence/absence with $n \times m$ dimensions (genes and
913 genomes), E is the matrix of protein embeddings from the representative genes with $n \times d$
914 dimensions (genes and embeddings), and S is the objective strain embeddings with $m \times d$
915 dimensions (genomes and embeddings).

916

917 **Average strain embeddings**

918 The average strain embeddings were calculated based on how many genes were encoded in
919 each genome and then applying a diagonal normalization on the matrix multiplication equation.
920 The diagonal normalization is a $m \times m$ matrix where the diagonal is the inverse of the number
921 of genes per strain, where N_i is the number of present genes in strain i :

922

923
$$D_N = \text{diag} \left(\frac{1}{N_1}, \frac{1}{N_2}, \dots, \frac{1}{N_m} \right)$$

924

925 Therefore, the average strain embeddings were calculated as:

926

927
$$S_{av} = D_N (A^T \cdot E)$$

928

929 Where S_{av} is the objective average strain embeddings with dimensions $m \times d$.

930

931 **Weighted average strain embeddings**

932 Finally, the contribution for each gene to the strain potential was scaled in terms of their
933 proportion, thus, increasing the importance of rare genes to the final position of the strain
934 embedding. That is, genes that are common have a lower weight than the ones that are rarer.
935 To do so, relied on an adaptation of the *Inverse Document Frequency* metric that can be
936 adapted here as the *Inverse Gene Frequency* (IGF).

937 First, the Strain Count for a gene family (C_i) was defined as the number of strains in which the
938 gene family i was present over the total number of strains (M). This was equivalent to the sum
939 of the i -th row of matrix A:

940

941
$$C_i = \sum_{j=1}^M A_{i,j}$$

942

943 We next defined Weight for Gene Family i (W_i) as the logarithm of the relative presence of a
944 specific gene family, where $W_i = 0$ if $C_i = M$ (gene present in all strains):

945
$$W_i = \log \left(\frac{M}{C_i} \right)$$

946 We then defined the diagonal matrix with gene weights calculated from last equation as:

947

948
$$W = \text{diag}(W_1, W_2, \dots, W_n)$$

949

950 Here W is a matrix of $n \times n$ dimensions. We then used this matrix to calculate the weighted
951 protein embeddings (E_w) as:

952

953
$$E_w = W \cdot E$$

954

955 Where E_w and E are matrices with $n \times d$ dimensions. Then we calculated the weighted sum of
956 embeddings ($S_{weighted_sum}$) for each strain as:

957

958
$$S_{weighted_sum} = A^T \cdot E_w = A^T(diag(W)E)$$

959

960 Where $S_{weighted_sum}$ is a $m \times d$ matrix. We proceeded by calculating the sum of weights for
961 each strain (W_{sum}) as:

962

963
$$W_{sum} = A^T \cdot W_{vec}$$

964

965 Where W_{vec} is an $n \times 1$ column vector containing the W_i values; and the sum of weights for
966 each strain j is $W_{sum,j} = \sum_{i=1}^N A_{i,j} \cdot W_i$

967 We created another diagonal normalization matrix (D_w , an $m \times m$ matrix), where the diagonal
968 elements are the inverse of the sum of weights for each strain:

969

970
$$D_w = diag\left(\frac{1}{W_{sum,1}}, \frac{1}{W_{sum,2}}, \dots, \frac{1}{W_{sum,m}}\right)$$

971

972 Finally, we used all these outputs to do the final calculation and got the weighted averaged
973 strain embeddings:

974

975
$$S_{w.av} = D_w \cdot S_{weighted_sum} = D_w(A^T(W \cdot E))$$

976

977 Where D_w is a $m \times m$ matrix, $S_{weighted_sum}$ is a $m \times d$ matrix, and the product $S_{w.av}$ is a $m \times d$
978 matrix whose each vector row S_j is the weighted averaged embedding for strain j .

979

980 **Functional mapping onto host phenotype**

981 Average strain embeddings from the 9,558 *E. coli* strains were used to create a Principal
982 Component Analysis in R using the prcomp function. The PCA coordinates were then
983 leveraged to create the pangenome-host functional mapping. The WormCat-aggregated
984 functions at level 3 were mapped onto the PCA coordinates 1 and 2 of the laboratory *E. coli*

985 strains. The worm functions were correlated to each Principal Component per separate by
986 using Spearman correlation and by correcting the P-value for multiple comparisons with a
987 FDR calculated with the Benjamini-Hochberg method.

988

989 **High-throughput imaging and data analysis**

990 *C. elegans* animals were synchronized by standard hypochlorite method, and around 20 L1
991 worms were transferred to each well of 96-well plates seeded with *E. coli* pangenome strains.
992 The worms were incubated at 20°C until D1 of adulthood and immobilized for imaging with 5
993 µL of 2% levamisole per well using INTEGRA Viatflo-96. Images were acquired by an
994 automated protocol that captured 10 images at fixed z-heights per well under identical
995 exposure settings using a Zeiss Axio Zoom V16 microscope system equipped with an
996 AxioCam camera operated by Zen 2 software (Zeiss). GFP filter set (excitation: 450-490 nm;
997 emission: 500-550 nm) or the RFP filter set (excitation: 559-585 nm; emission: 600-690 nm)
998 was used depending on the strain being imaged. All images were exported in CZI format, and
999 the most focused z-stack was extracted in Phyton (v. 3.12). Ilastik (v. 1.4) was used to detect
1000 worm pixels and to quantify fluorescence levels per worm/cluster of worms.

1001

1002 The fluorescence data was then filtered such that only single worms (ilastik single worm
1003 probability > 0.5) with a pixel size between 1000 and 6000 or clustered worms (ilastik clustered
1004 worm probability > 0.5) with a pixel size greater than 6000 were retained. Worm mean
1005 fluorescence expressed as the brightness per worm as a whole and corrected per size, was
1006 corrected against the background for each case. The mean-fluorescence of technical
1007 replicates was then averaged, and biological replicates were normalized. Mean-fluorescence
1008 was normalized such that, for each worm reporter, the median of each biological replicate was
1009 equal to the global median of all biological replicates. Following this, for each worm-bacteria
1010 pair the biological replicates, where n > 2 (up to n=5), were subjected to a z-score analysis
1011 using `scipy.stats.zscore` module (SciPy v1.8) and biological replicates with an absolute z-
1012 score > 1.5 for mean-fluorescence were removed. Given that most data had only 2 biological
1013 replicates and further replicates were only performed in select cases to replace replicates
1014 where some wells reduced data quality, from these sets of biological replicates the two
1015 replicates with the lowest deviation from each other were carried forward. Where only 1
1016 biological replicate (8.9% of worm-bacteria pairs) was available; these were carried forward
1017 alone. Single replicates arise due to empty wells, where reporter worms escape wells and do
1018 not appear in the images; however, differences between single replicates and double
1019 replicates were broadly nonexistent. The log2 ratio between each biological replicate pairs'
1020 mean-fluorescence value was then calculated, and the median log2 ratio calculated for each
1021 reporter worm. For each reporter worm dataset, a decreasing threshold was iteratively tested

1022 for the maximum allowed log2 ratio between replicates and the maximum deviation from the
1023 median log2 ratio. Here, data above the threshold was removed and the Pearson correlation
1024 between the biological replicates calculated using `scipy.stats.pearsonr` module (SciPy v1.8).
1025 The threshold was continuously decreased and worm-bacteria pairs removed until a Pearson
1026 correlation of ≥ 0.7 was achieved. The final mean-fluorescence values were then calculated
1027 from the average of the biological replicates. Values were then normalized against the median
1028 for each reporter case for the tree representation, which was visualized with `tidytree` (v. 0.4.6),
1029 `treeio` (v. 1.32.0) and `phytools` (v. 2.4-4).

1030 Pearson correlations of median ratio profiles were calculated for all strain-strain pairs to
1031 produce a correlation matrix using `pandas.DataFrame.corr` (`pandas` v2.1.4). A phylogenetic
1032 distance matrix for strains was hierarchical clustered, using the UPGMA algorithm, to produce
1033 a linkage matrix. Hierarchical clustering was performed here using the
1034 `scipy.cluster.hierarchy.linkage` module (SciPy v1.13.1) and prior to clustering the distance
1035 matrix was converted from the vector-form to the square-form using
1036 `scipy.distance.squareform` (SciPy v1.13.1). The median ratio correlation matrix was then
1037 clustered either using the phylogenetic linkage matrix or by strain-strain correlation profile
1038 similarity and displayed as a clustered heatmap (Seaborn v0.13.2, `matplotlib` v3.10.3).

1039 Pearson correlations of median ratio profiles were then calculated for all strain-strain pairs
1040 within the same phylogroup, as above. The percentage of strains with positive or negative
1041 correlations within each phylogroup, as well as for the pangenome, were calculated for a range
1042 of thresholds between 0 to 1 using steps of 0.05, excluding same-strain pairs. Where
1043 correlations were greater than the threshold, they were classed as positively correlated. Where
1044 correlations were less than the negative of the threshold, they were classed as negatively
1045 correlated. Clustered heatmaps were produced for each phylogroup correlation matrix,
1046 hierarchically clustering by strain-strain correlation profile similarity (Seaborn v0.13.2,
1047 `matplotlib` v3.10.3). Chord plots were calculated as the pairwise Pearson correlation and P-
1048 values corrected by Benjamini-Hochberg. The significance threshold was set at an alpha of
1049 0.05, and results were represented as the symmetrical relation of the significant correlations
1050 existent per phylogroup with the library `circlize` (v. 0.4.16)

1051

1052 **Proteostasis strains and culture conditions**

1053 *E. coli* BW25113 single gene deletion mutants were obtained from the KEIO collection and
1054 confirmed by PCR. The reaction was performed with GoTaq mix and the PCR was carried out
1055 in a PCRmax Alpha Cycler 2 as follows: 2min at 98°C for the initial activation of enzymes, 30

1056 cycles of 30s at 98°C, 30s at 58°C and 1 min/Kb at 72°C. Each strain was grown in LB broth
1057 overnight and 120 µL were plated on nematode growth medium (NGM) plates and kept at
1058 20°C for 2 days.

1059 The *C. elegans* UBV reporter, PP607 (hhls64[unc-119(+); sur-5::UbV-GFP]; hhls73[unc-
1060 119(+); sur-5::mCherry]) was provided by Hoppe Lab, Germany. This strain allows to quantify
1061 the proteasomal activity *in vivo* thanks to the GFP fused to a non-cleavable ubiquitin (UbV-
1062 GFP) under the control of the ubiquitous *sur-5* promoter^{20,23,25}. The following strains were
1063 made for fluorescence studies: FGC72 *nls470[Pcysl-2::GFP];wbmls67* [eft-
1064 *3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65*]; FGC73 *agls17 [myo-2p::mCherry + irg-1p::GFP]* IV;
1065 *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC74
1066 *[rtls30(pfat-7::GFP);wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC76
1067 *wwls25[Pacd-2::GFP + unc-119(+)]*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC77
1068 *dvls19 [(pAF15)gst-4p::GFP::NLS] III*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC78
1069 *agls219 [T24B8.5p::GFP::unc-54 3'UTR + ttx-3p::GFP::unc-54 3' UTR] III*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC79
1070 *wwls24 [Pacd-1::GFP + unc-119(+)]*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC80
1071 *zcls13[hsp-6::GFP];wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC81
1072 *dvls70 [hsp-16.2p::GFP + rol-6(su1006);wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC82
1073 *mgls73 [cyp-14A4p::gfp::cyp-14A4 3'UTR + myo-2p::mCherry] V*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC83
1074 *mul84 [(pAD76) sod-3p::GFP + rol-6];wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC84
1075 *wuls177 [Pftn-1::gfp lin-15(+)]*; *wbmls67 [eft-3p::3XFLAG::wrmscarlet::unc-54 3'UTR *wbmls65]*; FGC89
1076 *acd-1(ok1489), hhls72[unc-119(+); sur-5::mCherry], hhls64 [unc-119(+); sur-5::UbiV-GFP]III*; FGC120
1077 *hphd-1(ok3580); hhls72[unc-119(+); sur-5::mCherry], hhls64 [unc-119(+); sur-5::UbiV-GFP]III*; FGC121
1078 *mce-1(ok243) I; hhls72[unc-119(+); sur-5::mCherry], hhls64 [unc-119(+); sur-5::UbiV-GFP]III*. Worms were maintained at 20°C, on nematode growth medium NGM seeded
1079 with different bacterial strains. We supplemented NGM with homocysteine (final concentration
1080 1 and 5 mmol/L), propionate (final concentration 1 and 3 mmol/L) and cobalamin (vitamin B12,
1081 final concentration 150 nmol/L) solubilized in water and filter sterilized.
1082
1083
1084
1085
1086
1087

Double deletion bacterial strain construction

1088 Double gene deletion has been generated by using strains from the KEIO Library⁵⁶. This library
1089 is based on the *Escherichia coli* strain BW25113. The Kanamycin cassette has been removed
1090 by using the plasmid pCP20. This plasmid encodes the yeast Flp recombinase gene,
1091 chloramphenicol and ampicillin resistant genes, and temperature sensitive replication⁵⁷. *E. coli*
1092 BW25113 strains containing a single mutation were transformed following the TSS enhanced
1093 chemical transformation⁵⁸ and were plated on chloramphenicol 30ug/ml incubated at 30°C
1094 overnight. Clones were selected and streaked on LB with no selection and LB-Kanamycin (50
1095 µg/mL) plates, incubated at 30°C overnight. Kanamycin sensitive clones were streaked on LB
1096 agar plates and incubated at 37°C overnight to stop the replication of the pCP20. Clones were
1097 then streaked on LB, LB-Kanamycin and LB-chloramphenicol and incubated at 37°C
1098 overnight. Sensitive clones to chloramphenicol and kanamycin were selected and kanamycin
1099 cassette removal was confirmed by PCR. From this, we obtained mutant with a single mutation
1100 not carrying a kanamycin cassette. The secondary mutations were then extracted from
1101 another mutant of the Keio library. The strain of interest was lysed by using P1 phage and
1102 transduced in *E. coli* kanamycin sensitive strain according to the protocol from Thomason *et*
1103 *al.* 2007^{59,60} and was then selected for his resistance to kanamycin. Finally, the presence of
1104 both mutations was confirmed by PCR.

1105

1106 **Bacterial growth assay**

1107 The optical density (OD) at 595nm was monitored using NuncTM 96-well polystyrene round
1108 bottom microwell plates containing LB overnight at 37°C (previously grown overnight in LB
1109 and diluted 1,000-fold). Plates were placed in the BioTeK BioSpa 8 automated incubator
1110 (Agilent), and OD595 was measured every 30 minutes by the BioTek Citation 3 plate reader
1111 (Agilent) for 24h. Growth curves were extracted and area under the curve (AUC) calculated
1112 by using an in-house Python code (https://github.com/Cabreiro-Lab/cell_dynamics). Growth
1113 curves and stats were performed in Prism 8 (v8.4.0) and in RStudio.

1114

1115 **Bacterial overexpression mutant generation**

1116 We used strains from the ASKA library, based on the *E. coli* K-12 strain⁶⁰. The expression of
1117 the ORF of interest is under the control of an IPTG-inducible promoter (isopropyl β-D-1-
1118 thiogalactopyranoside) on the plasmid pCA24N carrying chloramphenicol resistance. Clones
1119 overexpressing *btuB* and *tonB* were grown in LB broth supplemented with 30 µg/mL of
1120 chloramphenicol at 37°C shaking at 200 rpm, plasmids were then extracted with the kit
1121 Miniprep GenElute (Sigma Aldrich PLN350) and resuspend in water. Plasmids were
1122 transformed into strains of interest using the TSS enhanced protocol⁵⁸. Once the
1123 transformation was confirmed by PCR, we grown these strains in LB broth supplemented with
1124 1 mmol/L of IPTG at 37°C shaking at 200 rpm for 16 hours.

1125

1126 **UV-irradiation of bacteria**

1127 Bacteria strains were irradiated with UV to inactivate them⁶¹. To prepare UV-irradiated *E. coli*,
1128 an overnight culture was grown in LB broth at 37°C with shaking at 200 rpm for 16 hours. A
1129 CL-1000 UV crosslinker equipped with UV-B lamps was sterilized by wiping with 70% ethanol
1130 and irradiating the chamber for 5 minutes alternatively. The overnight culture was diluted in
1131 fresh sterile LB at a 1:3 ratio and placed in petri dishes. Plates were placed inside the UV
1132 chamber without lids and irradiated for a total of 60 minutes, swirling every 10 minutes to
1133 ensure uniform exposure. To prevent heat shock-induced bacterial death, the chamber was
1134 allowed to cool for 5 minutes between intervals. Following UV treatment, bacteria were
1135 collected into a new sterile 50 mL Falcon tube, centrifuged at 4000 rpm for 10 minutes at 4°C,
1136 and the supernatant was carefully removed. The bacterial pellet was resuspended in LB and
1137 placed on NGM plates for worms.

1138

1139 **Protein identification and quantification by LC-MS/MS**

1140 **Bacterial samples preparation**

1141

1142 *E. coli* BW25113, wild type, $\Delta lon::kan$, $\Delta htpG::kan$, $\Delta dnaK::kan$, $\Delta clpX::kan$, $\Delta cbpM::kan$,
1143 $\Delta dnaK\Delta clpX::kan$ were grown in LB broth overnight at 37°C shaking 200 rpm. NGM plates
1144 were seeded with 120 μ L of overnight bacterial cultures and lawns were left to grow at 25°C
1145 for 2 days. 5 biological replicates were included per condition. Bacteria were collected from
1146 plates with PBS 1X buffer using a sterile glass scraper in Diagenode tubes. Samples were
1147 centrifuged at 14000 rpm for 90s at room temperature. The supernatant was removed, and
1148 pellets were resuspended with lysis Buffer (8 mol/L urea, 20 mmol/L hepes pH 8). Samples
1149 were flash frozen in liquid nitrogen and kept on ice from this point onward. Pellets were then
1150 lysed via sonication for 5 minutes at 100% amplitude by using the sonicator waterbath
1151 QSonica Q700. Samples were centrifuged at 20000g for 15 minutes at 4°C to separate the
1152 cellular debris and proteins. Supernatants containing the extracted protein were transferred to
1153 clean tubes and protein concentrations were determined by the Quick start Bradford protein
1154 assay (Biorad) at 565 nm. The BSA was used for standard curves. We proceeded to two
1155 proteomic analyses, the first one with *E. coli* BW25113, wild type, $\Delta lon::kan$, $\Delta htpG::kan$,
1156 $\Delta dnaK::kan$, $\Delta clpX::kan$, $\Delta cbpM::kan$. The second one has been proceeded with *E. coli*
1157 BW25113 wild type, $\Delta dnaK::kan$, $\Delta clpX::kan$, and $\Delta dnaK\Delta clpX::kan$.

1158

1159 **Worm samples preparation**

1160 N2 worms were cultivated on NGM plates seeded with *E. coli* BW25113 wild type for 5 days.
1161 Eggs were harvested and L1 were seeded on NGM seeded with bacterial strains of interest
1162 that have been incubated 2 days at 25°C. 5 biological replicates were included per condition.
1163 After 4 days, worms were harvested and washed 5 times with PBS 1X buffer and transferred
1164 in Diagenode tubes. Worms were then resuspended in the lysis buffer (8 mol/L urea, 20
1165 mmol/L hepes pH 8.0). Samples were flash frozen with liquid nitrogen then sonicated 2 times
1166 5 minutes at 100% amplitude by using the sonicator waterbath QSonica Q700. Samples were
1167 centrifuged 20 min 20000 rpm 4°C. Supernatants containing the extracted protein were
1168 transferred to clean tubes and protein concentrations were determined by the Quick start
1169 Bradford protein assay (Biorad) at 565 nm. BSA was used for standard curves.
1170

1171 **Sample preparation for bacterial proteomics**

1172 Protein samples (100 µg per sample) were processed using an in-solution digestion
1173 procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and
1174 in the dark, to final concentrations of 10 mmol/L dithiothreitol (DTT) and 50 mmol/L 2-
1175 chloroacetamide (2-CAM), respectively. Samples were diluted two-fold for the first analysis
1176 with 20 mmol/L HEPES (pH 8.0), reducing the urea concentration to 4 mol/L, and diluted 8-
1177 fold for the second analysis, reducing the urea concentration to 1 mol/L. This was followed by
1178 the addition of 2 µg of trypsin (Promega, V528A) and incubation overnight for the first analysis.
1179 For the second analysis, an initial LysC (Wako, 121-05063) digestion at a 1: 500 proteases to
1180 protein ratio, for 5 hours at 37°C. Samples were then further diluted to a final urea
1181 concentration of 2 mol/L with 20 mmol/L HEPES (pH 8.0), followed by the addition of trypsin
1182 (Serva, 37286.03) at 1:50 protease to protein ratio. Samples were incubated at 37°C for 16
1183 hours. The digestion of the first analysis was stopped by acidification with a final concentration
1184 of 1% trifluoroacetic acid (TFA) against 0,2% for the second one and protein digests were
1185 desalted using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted
1186 with 60% acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation.
1187

1188 **Sample preparation for worm proteomics**

1189 Protein samples (100µg/sample in 8M urea) were processed using an in-solution digestion
1190 procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and
1191 in the dark, to final concentrations of 10mM dithiothreitol (DTT) and 50mM 2-chloroacetamide
1192 (2-CAM), respectively. Samples were diluted 8-fold with 20mM HEPES (pH 8.0), reducing the
1193 urea concentration to 1.5M. This was followed by addition of 2µg of trypsin (Promega, V528A).
1194 Samples were incubated over-night at 37°C. The digestion was stopped by acidification with
1195 10% trifluoroacetic acid (TFA) to a final concentration of 1% and protein digests were desalted

1196 using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted with 60%
1197 acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation.

1198

1199 **Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis**

1200 Dried tryptic digests were re-dissolved in 0.1% TFA and each sample injected at 2 μ g LC-
1201 MS/MS analysis was performed using an Ultimate 3000 RSLC nano liquid chromatography
1202 system (Thermo Scientific) coupled to a coupled to a Q-Exactive mass spectrometer (Thermo
1203 Scientific) via an EASY spray source (Thermo Scientific). For LC-MS/MS analysis re-dissolved
1204 protein digests were injected and loaded onto a trap column (Acclaim PepMap 100 C18, 100
1205 μ m \times 2cm) for desalting and concentration at 8 μ L/min in 2% acetonitrile, 0.1% TFA. Peptides
1206 were separated on-line to an analytical column (Acclaim Pepmap RSLC C18, 75 μ m \times 75 cm
1207 for the bacterial samples, and C18, 75 μ m \times 50 cm for the worm samples) at a flow rate of 200
1208 nL/min and 250 nL/min for the bacteria and worm samples respectively). For bacteria samples,
1209 peptides were separated using a 120 minutes gradient, 4-25% of buffer B for 90 minutes
1210 followed by 25-45% buffer B for another 30 minutes (composition of buffer B – 80%
1211 acetonitrile, 0.1% FA). For worm samples, peptides were separated using a 90 minutes
1212 gradient, 1-22% of buffer B for 60 minutes followed by 22-44% buffer B for another 30 minutes
1213 (composition of buffer B – 75% acetonitrile, 5% DMSO and 0.1% FA). Eluted peptides were
1214 analyzed by the mass spectrometer operating in positive polarity using a data-dependent
1215 acquisition mode. Ions for fragmentation were determined from an initial MS1 survey scan at
1216 70000 resolution for bacterial samples and 120000 for worm samples, followed by HCD
1217 (Higher Energy Collision Induced Dissociation) of the top 12 most abundant ions for bacteria
1218 samples and 30 most abundant ions for worm samples at 17500 resolution. MS1 and MS2
1219 scan AGC targets were set to 3e6 and 5e4 for maximum injection times of 50ms and 50ms
1220 respectively. A survey scan m/z range of 375 – 1800 was used, normalized collision energy
1221 set to 27%, charge exclusion enabled with unassigned and +1 charge states rejected and a
1222 minimal AGC target of 1e3. Dynamic exclusion was set to 45-50 seconds.

1223

1224 **Data analysis for proteomics**

1225 Raw proteomic files were analyzed by using the Perseus software (version 1.6.2.3 for the
1226 bacterial samples analysis and version 1.6.10.43 for the worm samples) which is part of
1227 MaxQuant to obtain statistical and bioinformatic analysis, as well as for visualization (the
1228 perseus computational platform for comprehensive analysis of proteomics data). LFQ
1229 intensities were located as columns. The data matrix was filtered based on categorical
1230 columns to remove reverse decoy hits, potential contaminants and protein groups which were
1231 'only identified by site'. Gene annotations were done by using *E. coli* K12 (version 20200915)

1232 or *C. elegans* (version 20210628) GOBP, GOMF, GOCC, and KEGG database. Data were
1233 log2 transformed. The 5 biological replicates for each mutant were then pooled, compared to
1234 each other and visualized as Volcano plots. Volcano plots were generated based on LFQ
1235 intensities with the following settings: T-test; side: both; number of randomizations: 250;
1236 preserve grouping in randomizations: <none>; FDR: 0.05; S0: 0.1. Then, significant
1237 differences between mutants were exported for a Hierarchical clustering analysis (HCA). This
1238 was carried out after filtering rows based on a minimum of two valid values in at least one
1239 group, Z-scoring of values in rows. The HCA was generated with the following settings for both
1240 rows tree and columns tree: distance: Euclidean; linkage: average; constraint: none;
1241 preprocess with k-means selected (number of clusters: 300; maximal number of iterations: 10;
1242 number of restarts: 1). Further data representation and plotting was carried out in R
1243 programming language.

1244

1245 Given that both $\Delta clpX$ and $\Delta dnaK\Delta clpX$ behave in a similar way opposed to the $\Delta dnaK$
1246 deficient strain, we subtracted the differences between groups to study the proteins that were
1247 unique to each cluster. We were specifically interested in the set of proteins that were
1248 downregulated in $\Delta dnaK$ opposed to the upregulated in $\Delta dnaK\Delta clpX$, we used the double
1249 mutant as a control and subtracted the proteins found in $\Delta dnaK$. Therefore, the effects shown
1250 in the distinct proteins between both groups can be described as the unique signature of the
1251 differential proteostasis capabilities of both groups. In a similar way, the set of proteins
1252 expressed in $\Delta dnaK$ but not in the other groups was studied using the same logic. Thus, the
1253 set of proteins that conferred protein stability was also captured here. Groups were extracted
1254 from the significant proteins using R programming language and the UpSet library v. 1.4.0.

1255

1256 **Western blot**

1257 Worms were grown on plates seeded with *E. coli* BW25113, $\Delta lon::kan$, $\Delta htpG::kan$,
1258 $\Delta dnaK::kan$, $\Delta clpX::kan$, $\Delta cbpM::kan$, $\Delta hscA::kan$, $\Delta dnaJ::kan$, $\Delta hybE::kan$ from the L1 to
1259 day1 adult stage at 20°C. 75 worms were collected in 100 μ L 1X SDS loading buffer. Then
1260 samples were boiled 5 minutes at 95°C at 1400 rpm, sonicated for 5 minutes at 100% of
1261 amplitude by using the sonicator waterbath QSonica Q700, and boiled again for 5 minutes at
1262 95°C at 1400 rpm. Samples were then centrifuged for 5 minutes at 14000 rpm. For the western
1263 blot, proteins from the lysate worms were separated by size using an Invitrogen precast SDS-
1264 Page gel 4-12%. Separated proteins were transferred on a nitrocellulose membrane by a dry
1265 blotting system (iBlot 2 dry blotting system) with a setting according to manufacturer's
1266 instructions. For the detection of GFP, mCherry and Tubulin, the membranes were probed
1267 with primary Mouse monoclonal antibodies anti-GFP at a 1:5000 dilution (clone JL-8), anti-

1268 mCherry at a 1:2000 dilution (clone 1C51), anti-alpha tubulin at a 1:10000 dilution (clone B-5-
1269 1-2) respectively. Then membranes were exposed to the secondary antibody, Li-Cor anti-
1270 Mouse 800CW/680 from Donkey at a 10000 dilution.
1271 The intensity of each GFP band was normalized by the intensity of its corresponding mCherry
1272 and Tubulin bands. 3-4 biological replicates were included per condition. Statistical analysis
1273 was done by using a one-way ANOVA with multiple comparisons (Tukey's multiple
1274 comparison test) with the software PRISM8 (version 8.4.0).

1275

1276 **Nematode fluorescence microscopy**

1277 PP607 worms (UBV worms) were cultivated on NGM plates seeded with *E. coli* BW25113 wild
1278 type for 5 days. Eggs were harvested and L1 were seeded on NGM previously seeded with
1279 bacterial strains of interest incubated 2 days at 25°C. After 4 days at 20°C, a minimum of 11
1280 worms were anesthetized with 2% levamisole on NGM plates and were imaged under a 40x
1281 objective using a Zeiss Axio Zoom V16 microscope system equipped with an AxioCam MRm
1282 camera operated by Zen 2 software (Zeiss). Either the GFP filterset (excitation: 450-490 nm;
1283 emission: 500-550 nm) or the mCherry filterset (excitation: 559-585 nm; emission: 600-690
1284 nm) was used. All images were exported in CZI format and fluorescence levels were quantified
1285 using Volocity 5.2 software (PerkinElmer) run on a Surface tablet (Microsoft).

1286 The fluorescence intensity of worms was calculated as the pixel density of the entire cross-
1287 sectional area occupied by worms from which the pixel density of the background had been
1288 subtracted. 3 independent replicates were carried out with a minimum of 11 worms imaged
1289 per condition per replicate. The fluorescence intensity was calculated automatically by setting
1290 a minimum threshold intensity that excluded the background.

1291 3-6 biological replicates were included per condition. Statistical analysis was done by using a
1292 one-way ANOVA with multiple comparisons (Tukey's multiple comparison test) with the
1293 software GraphPad PRISM8 (version 8.4.0).

1294

1295 **DATA AVAILABILITY**

1296

1297 The raw sequences for the transcription profiles of the mono-association experiments with *C.*

1298 *elegans* and the *E. coli* pangenome reported in this study can be accessed in GSE315953.

1299 The raw proteomics profiles reported in the experimental validation can be accessed in PRIDE

1300 under the IDs PXD071769, PXD071818 and PXD071867.

1301

1302 **ACKNOWLEDGEMENTS**

1303

1304 F.C. was supported by the Wellcome Trust/Royal Society (102532/Z/12/Z and
1305 102531/Z/13/A), the DFG German Research Foundation (EXC 2030 -390661388) and
1306 (IPFP-B02 Filipe Cabreiro) of the Center for Molecular Medicine Cologne. T.H is
1307 supported by Research Unit FOR5762 (project HO 2541/18-1 to T.H.) and (ERC,
1308 Cellular PQCD, 101141579). D.M.M was supported by the Leverhulme Trust (RPG-
1309 2022-299). We acknowledge computational resources and support provided by the
1310 Imperial College Research Computing Service (<http://doi.org/10.14469/hpc/2232>). We
1311 would like to thank Saul Moore for helping with developing a method to select focused
1312 microscope images, Jennifer Van der Laan and Evgeny Galimov for technical support.
1313 We would like to express our gratitude to our colleagues and to Dr. Mária Džunková
1314 which helped to shape this manuscript.

1315

1316

1317 **AUTHOR CONTRIBUTIONS**

1318

1319 D.M.M., F.C. conceptualized the research. D.M.M. performed the computational
1320 analysis of the pangenome. D.M.M, A.A., C.B., H.M.D., J.W. and F.C. analyzed the
1321 data. A.A. performed the reporter validation and transcriptome studies. C.B., A.Z.,
1322 F.O., J.W. and F.C performed the experiments for the worm proteostasis. A.I. and L.G.
1323 sequenced transcriptomes and genomes. I.K., G.R, A.M. and H.K. performed
1324 proteomics identification and analysis. D.M.M., and F.C. wrote the manuscript. D.M.M.,
1325 C.B., A.A. and F.C. participated in editing the manuscript. D.M.M., T.H. and F.C.
1326 participated in the interpretation of the main findings. D.M.M and F.C. supervised the
1327 research. All authors read and approved the final manuscript.

1328

1329 **COMPETING INTERESTS**

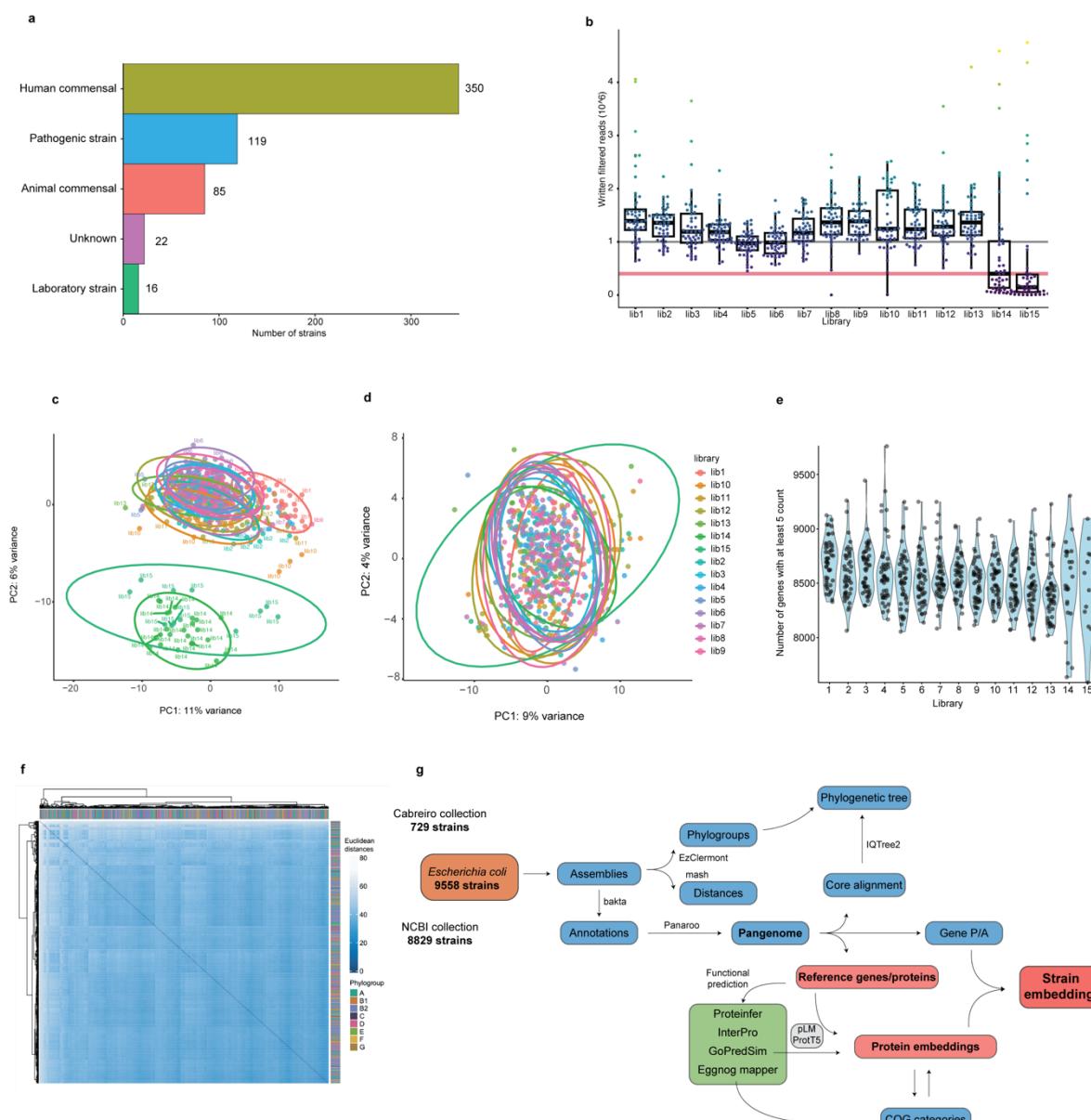
1330

1331 The authors declare no competing interests.

1332

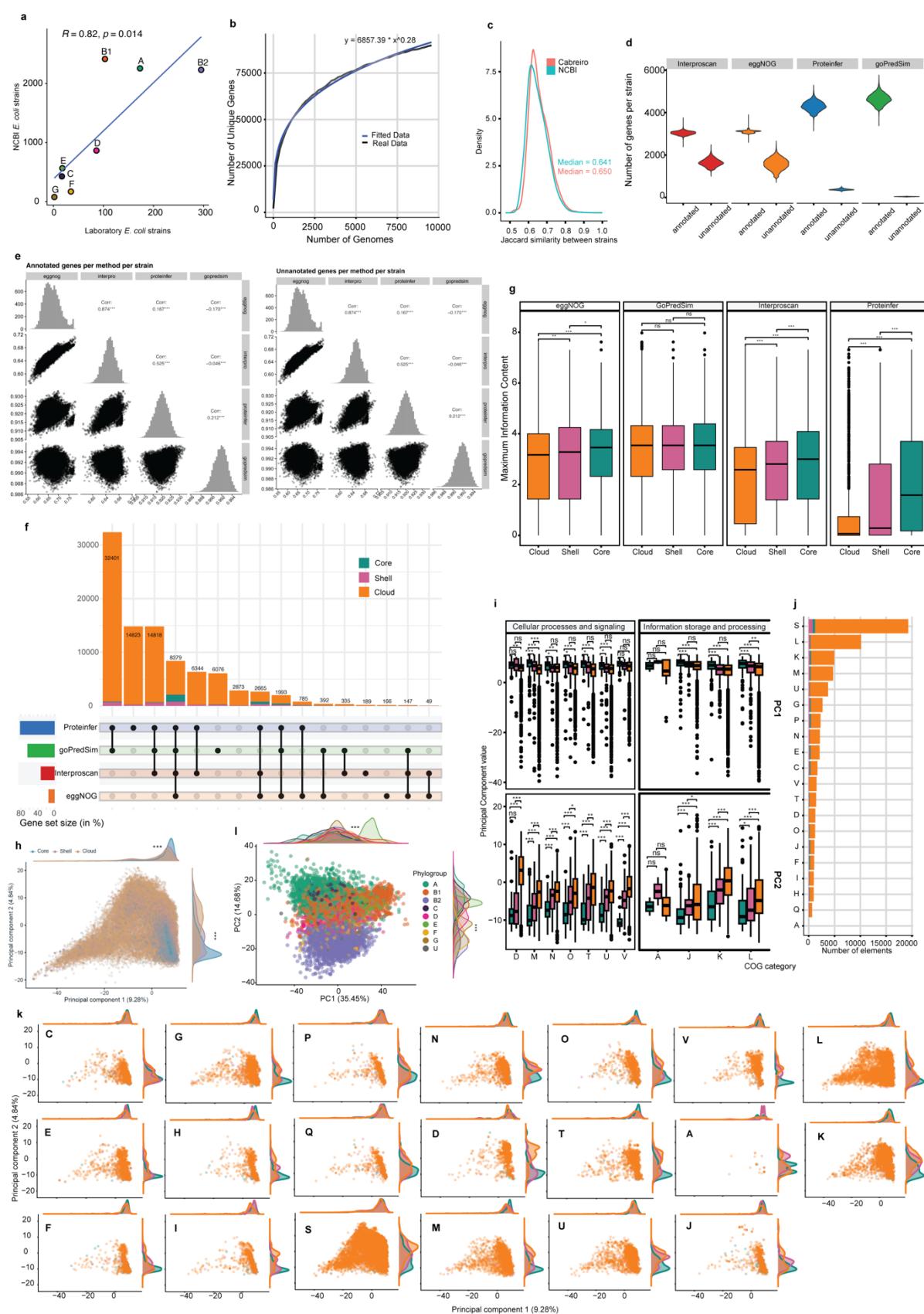
1333 EXTENDED DATA FIGURES

1334 Extended Data Figure 1

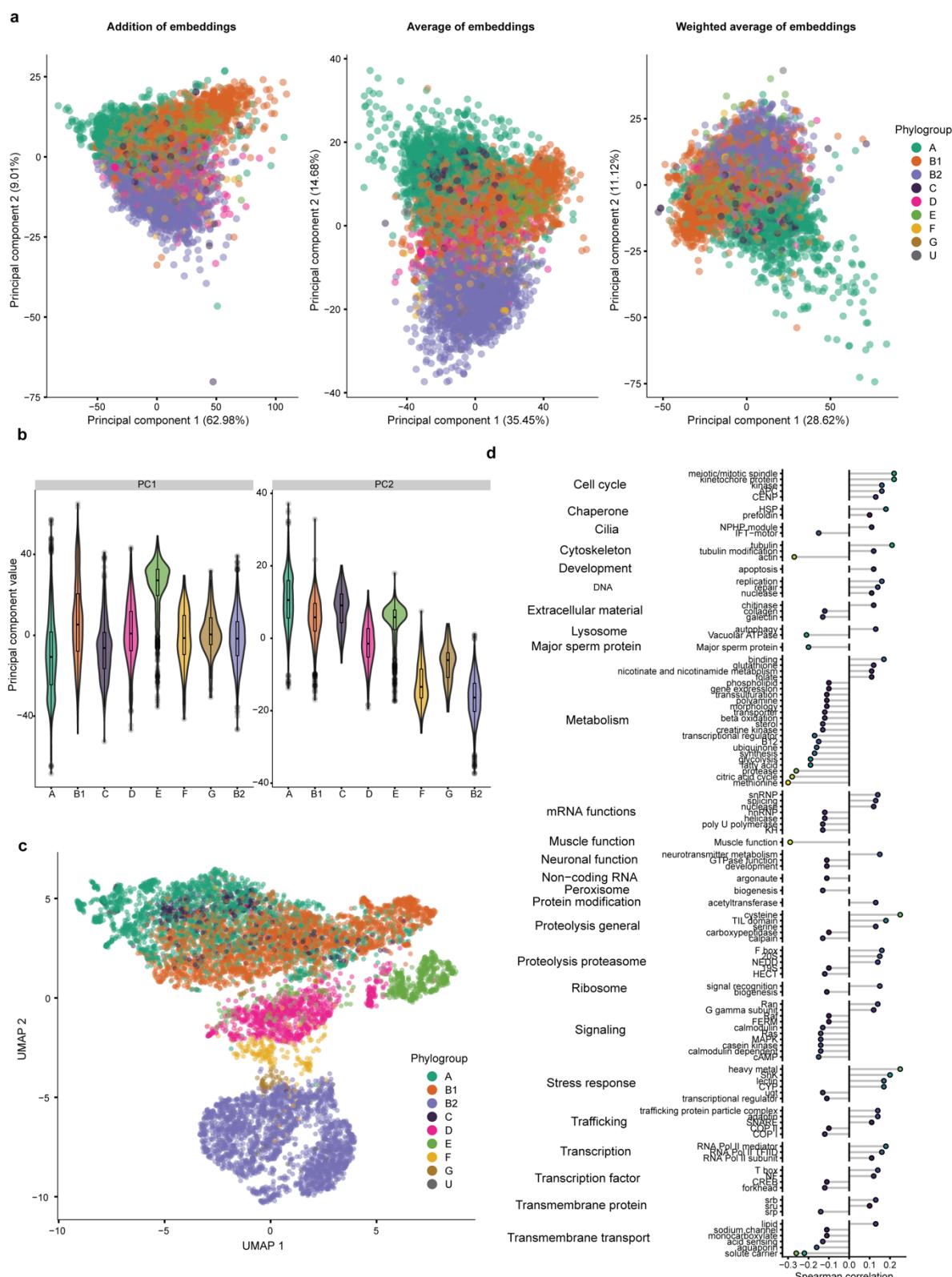


1335

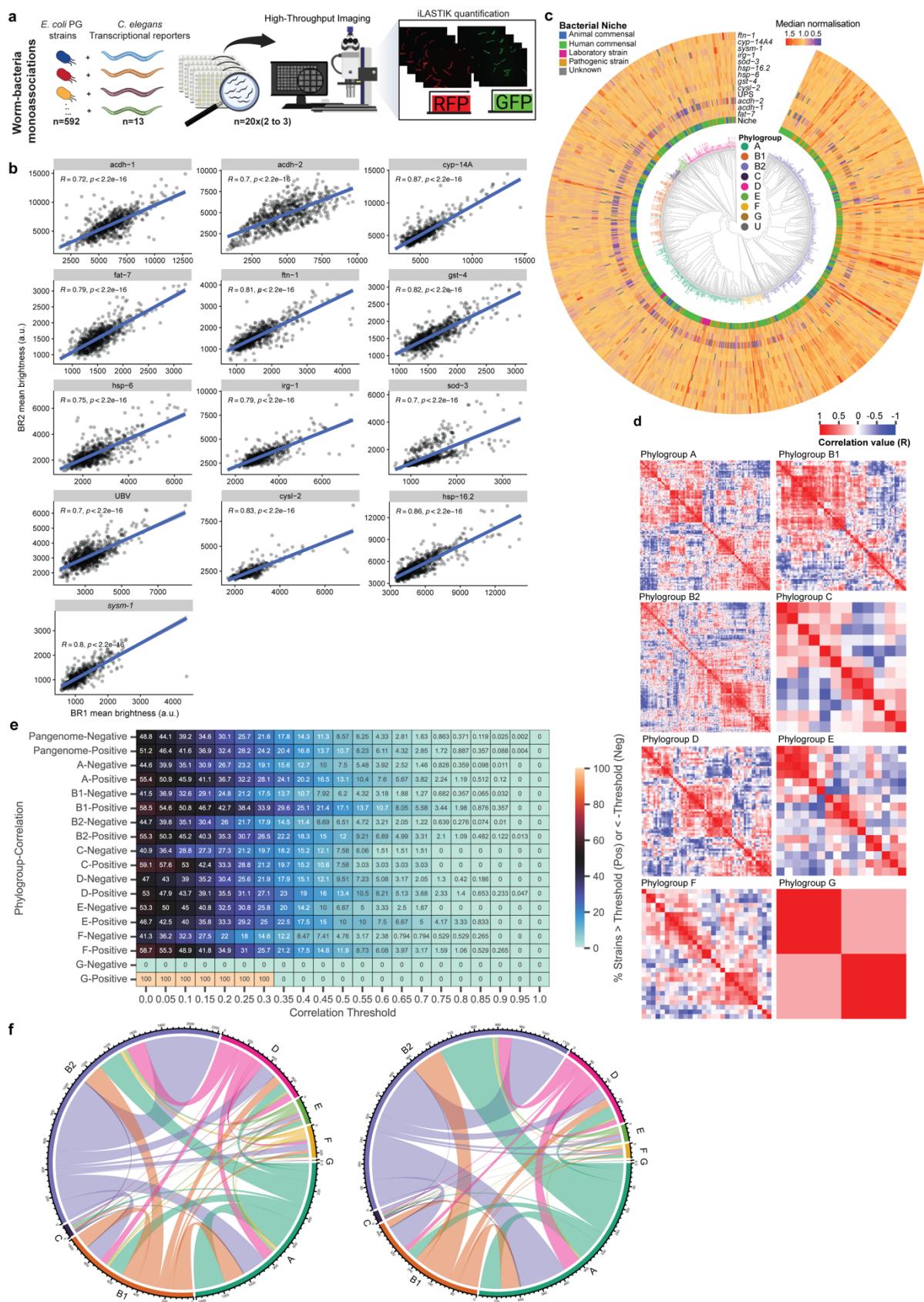
1336 **Extended Data Figure 2**



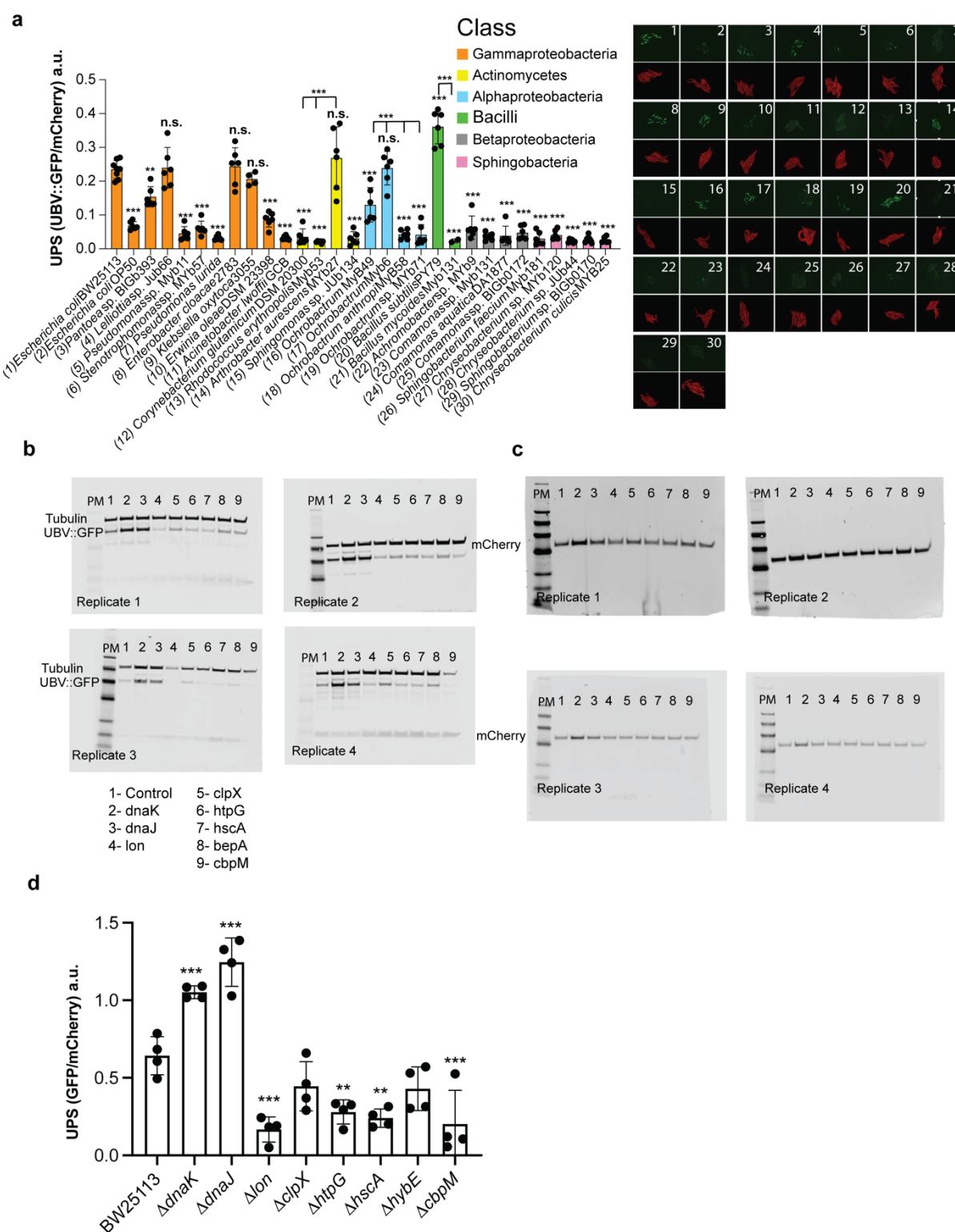
1338 **Extended Data Figure 3**



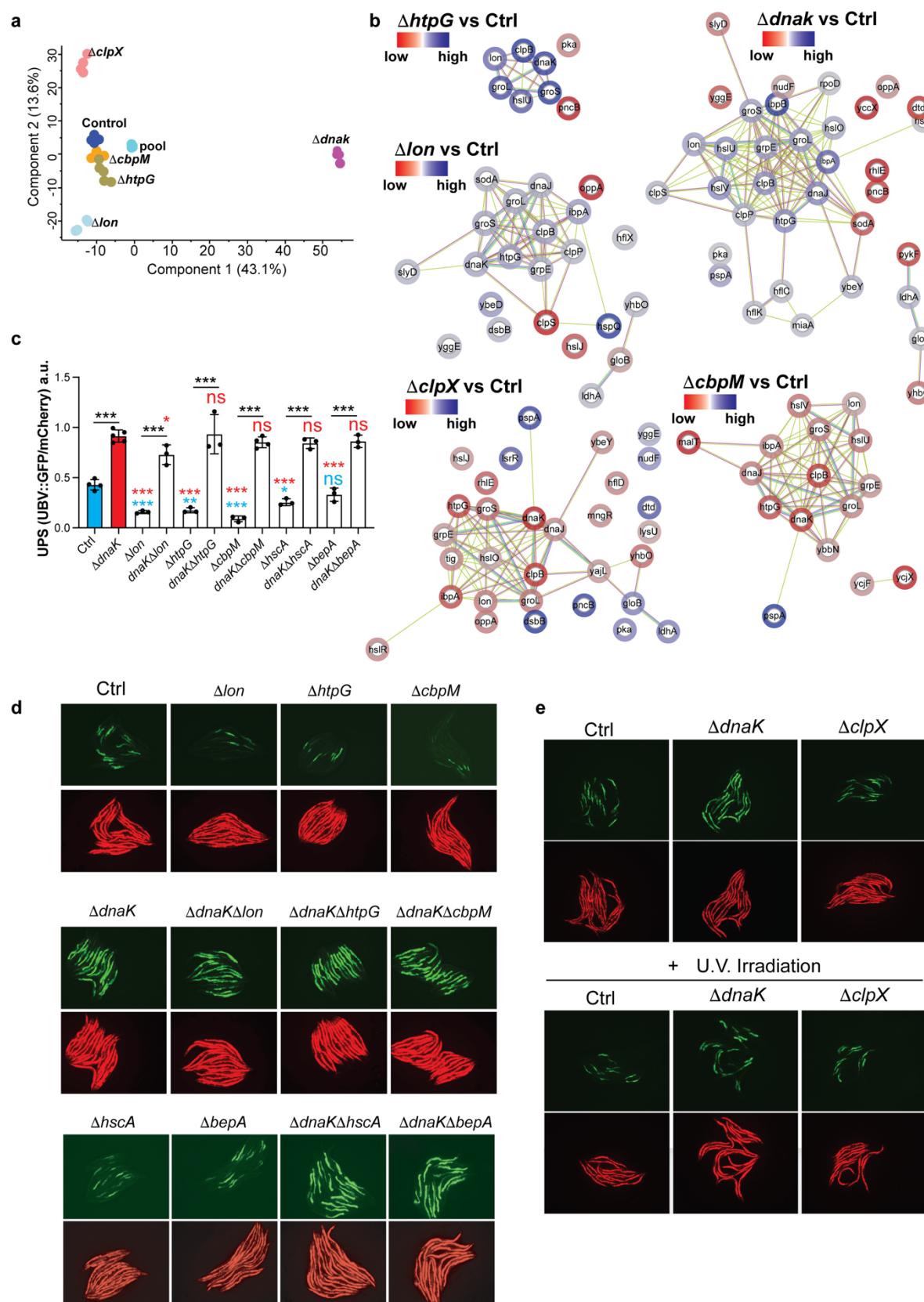
1340 **Extended Data Figure 4**



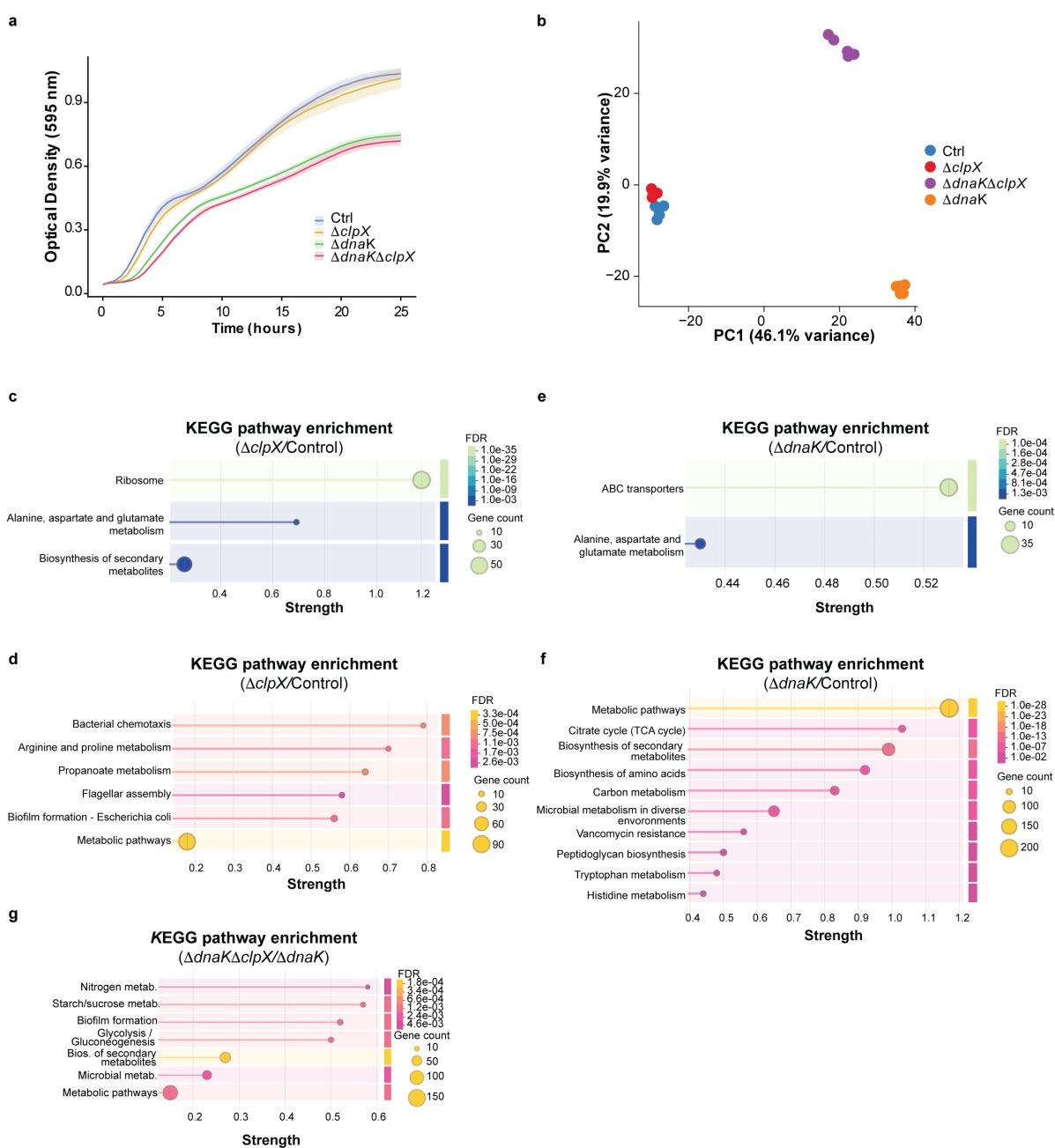
1342 **Extended Data Figure 5**



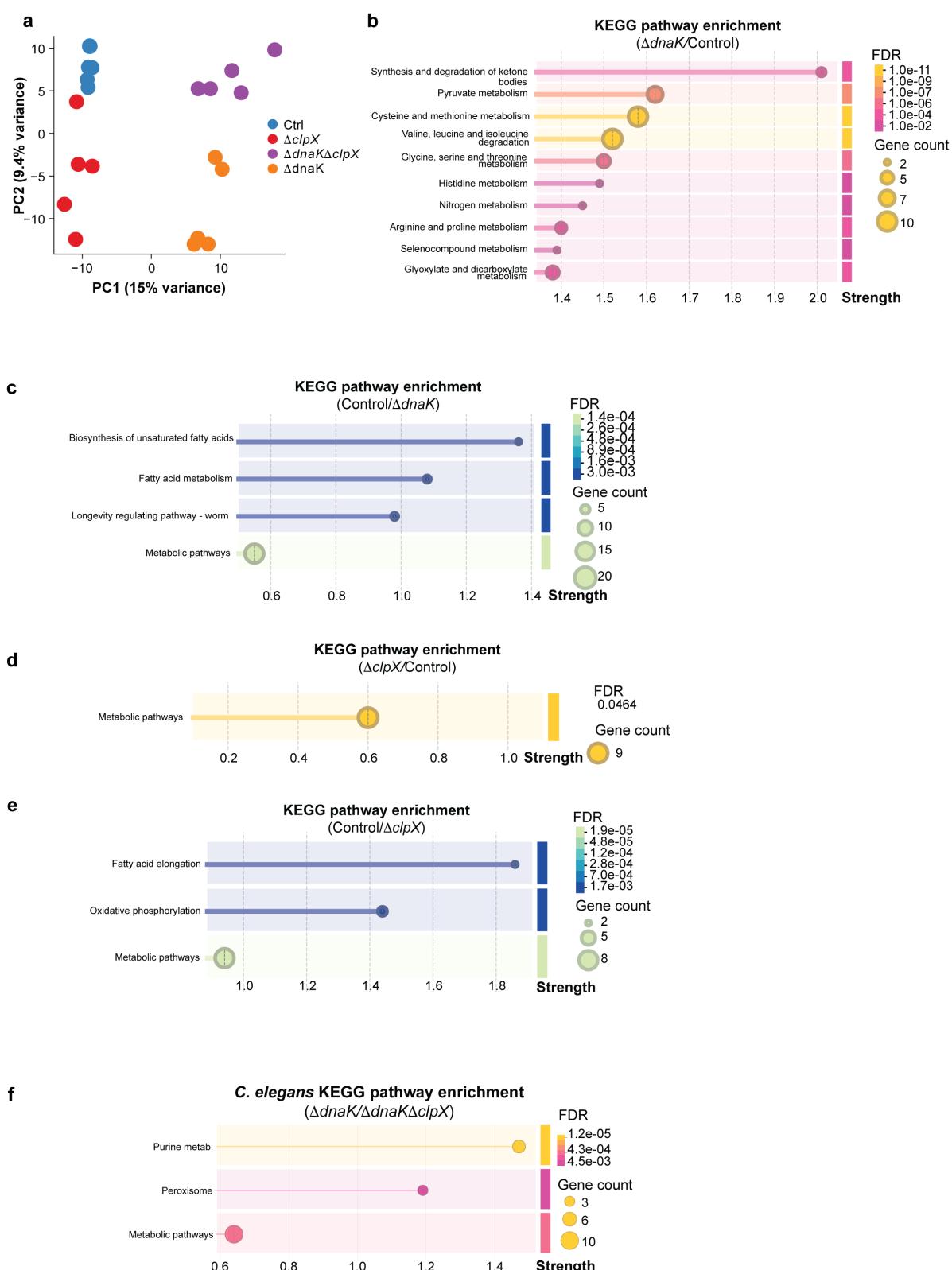
1344 **Extended Data Figure 6**



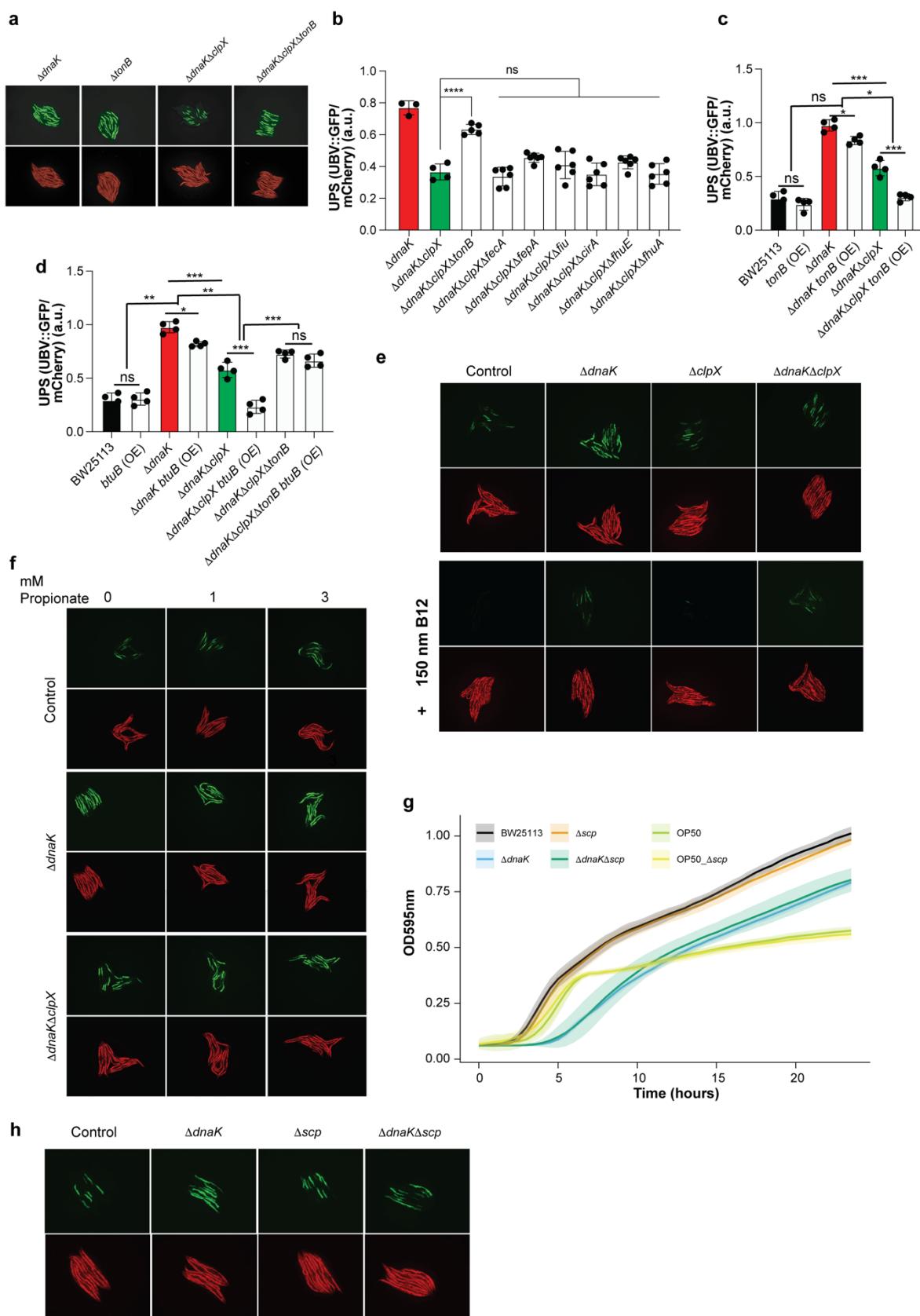
1346 **Extended Data Figure 7**



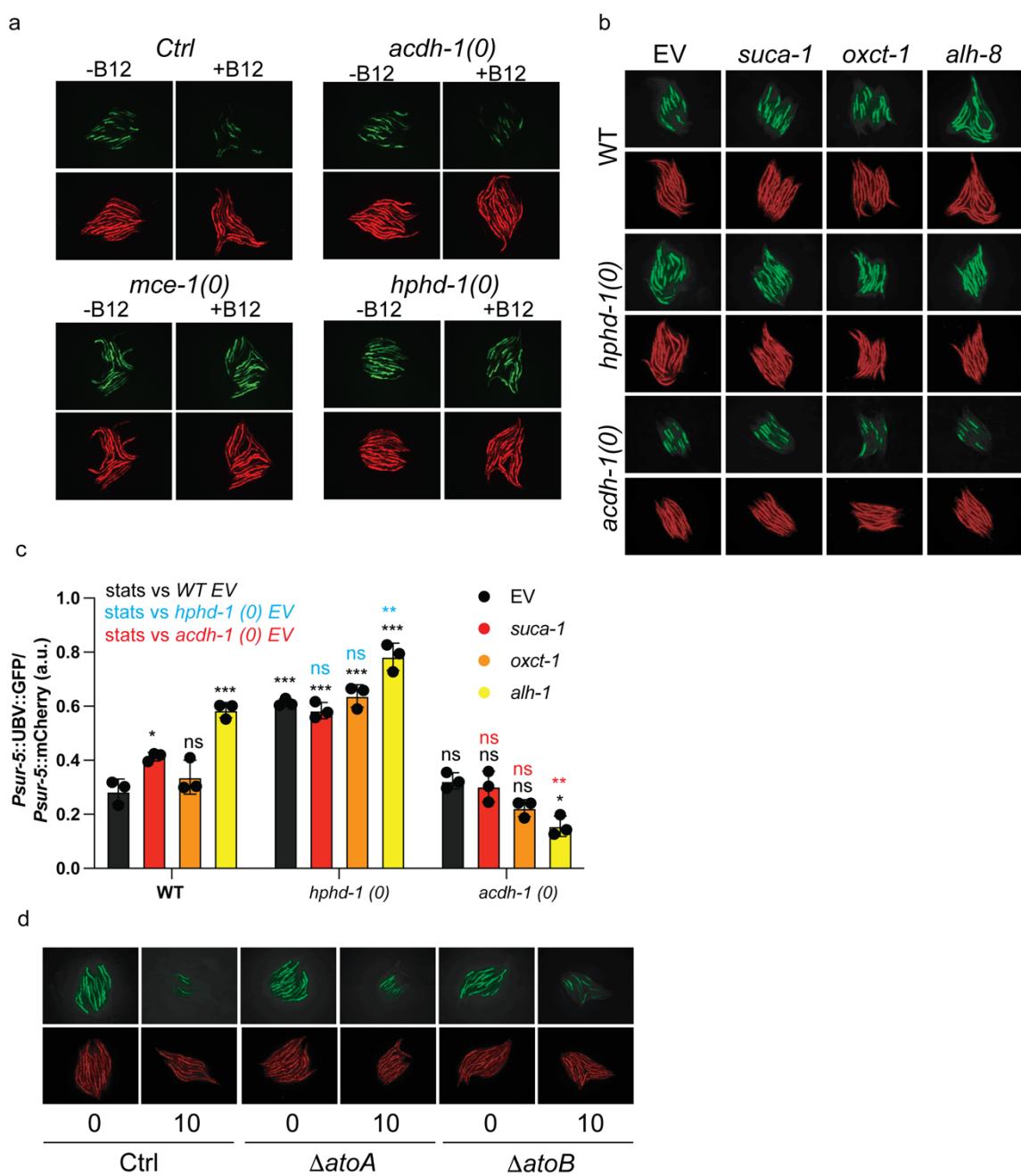
1348 **Extended Data Figure 8**



1350 **Extended Data Figure 9**



1352 **Extended Data Figure 10**



1354 **EXTENDED DATA FIGURE/TABLE LEGENDS**

1355

1356 **Fig. S1 Strain composition and RNA-seq quality control.** **a**, Number of *E. coli* strains in
1357 the panel classified as human commensal, human pathogenic, animal commensal, laboratory
1358 strains or of unknown origin. **b**, Read-count distribution per library for the high-throughput
1359 RNA-seq experiment, generated on a NextSeq 2000 P3 run (1.2×10^9 total reads). **c**, PCA of
1360 *C. elegans* transcriptomes after outlier removal, showing batch-driven separation with
1361 samples from libraries 1, 14 and 15 forming distinct clusters. **d**, PCA of the same dataset after
1362 batch correction, showing no library-driven separation. **e**, Violin plot of the number of genes
1363 detected per worm with at least 5 normalized counts. Each dot represents a worm sample;
1364 data is represented by sequencing library. **f**, Heat map of pairwise Euclidean distances based
1365 on DESeq2-normalized *C. elegans* gene expression, with hierarchical clustering of libraries
1366 with dark blue-to-light blue showing close-to-distant relationships between samples. PCA data
1367 and Euclidean distances are showing the VST normalized data from the transcriptional
1368 profiles.

1369

1370 **Fig. S2 Functional annotation performance and embedding structure of the *E. coli***
1371 **pangenome.** **a**, Phylogroup frequency Pearson correlation between the laboratory *E. coli*
1372 trains and an NCBI *E. coli* collection ($R = 0.82$, $P = 0.014$). **b**, Pangenome accumulation curve
1373 for the 9,558 *E. coli* genomes. The x-axis shows the number of genomes progressively added
1374 to the analysis, and the y-axis shows the cumulative number of unique genes observed with
1375 increasing pangenome size. **c**, Distribution of the pairwise Jaccard similarity between *E. coli*
1376 strains from NCBI and the Cabreiro lab collection. Median values per collection are
1377 represented. **d**, Violin plots representing the fraction of genes annotated by different functional
1378 annotation tools: Interproscan, eggNOG-mapper, Proteinfer and GOPredSim. **e**, Pearson
1379 correlation of annotated (left) and unannotated (right) fraction per genome and per method
1380 ($n=92,435$). **f**, UpSet diagram of the number of genes with a GO term annotation by each one
1381 of the functional annotation methods. Dots in the lower part describe which tool or tools are
1382 being considered in each case. Genome partition is represented as a color in the bar-plot. **g**,
1383 Maximum information content for the GO terms annotated by each method per genome
1384 partition ($n=1,347-60,152$). **h**, PCA projection of the protein embeddings from the linear
1385 reference from the *E. coli* pangenome. Colors represent the genome fractions of core, shell
1386 and cloud ($n=92,244$). **i**, Principal component values of gene embeddings stratified by COG
1387 functional category and pangenome class ($n=2-9,802$). **j**, Distribution of genes across COG
1388 categories, partitioned into core, shell and cloud components. Bars show, for each COG

1389 category, the number of genes assigned to the core, shell and cloud genome. **k**, PCA
1390 projections of protein embeddings split per genes classified in the different COG categories.
1391 **I**, PCA projections of the strain embeddings colored by the main *E. coli* phylogroups (n=9,558).
1392 Data shown in **g**, **i**, **h** and **I** were tested with two-tail pairwise T-test and significance is
1393 expressed as *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05.

1394

1395 **Figure S3. Construction and structure of *E. coli* strain embeddings.** **a**, PCA of strain
1396 embeddings for the 9,558 *E. coli* strains, built using three aggregation strategies: (left) addition
1397 of gene embeddings, (middle) average of gene embeddings and (right) weighted average of
1398 gene embeddings (see Methods for a detailed description). Points are colored by phylogroup.
1399 **b**, Violin plots showing the distributions of PC1 (left) and PC2 (right) coordinates of strain
1400 embeddings, calculated as the average of gene embeddings, across phylogroups. **c**, UMAP
1401 projection of strain embeddings for all 9,558 *E. coli* strains, revealing distinct clusters colored
1402 by phylogroup. **d**, Bubble plot of the significant Spearman correlation coefficients (ρ) between
1403 PC2 of the *E. coli* strain embeddings and WormCat functional scores across all significant
1404 worm functional categories.

1405

1406 **Figure S4. Associations between strain embeddings, WormCat functional responses**
1407 **and gene reporter phenotypes.** **a**, Scheme showing the high-throughput experimental
1408 design to analyze the *C. elegans* gene reporters. **b**, Pearson correlation representation of two
1409 biological replicates per gene reporter in *C. elegans* (n=589). **c**, Phylogenetic tree of the *E.*
1410 *coli* strain panel annotated with ecological niche and *C. elegans* fluorescent reporter
1411 responses. The innermost layer indicates the origin of each strain (human commensal, human
1412 pathogenic, animal commensal, laboratory strain or unknown). Outer layers show median
1413 normalized fluorescence ratios for each *C. elegans* gene reporter, mapped onto the
1414 corresponding *E. coli* strain tips. **d**, Pairwise Pearson correlation coefficients between *E. coli*
1415 strains separated by phylogroup (n=589). **e**, Heat map representing the percentage of positive
1416 and negative correlations within *E. coli* phylogroups given a range of correlation thresholds (x-
1417 axis) (n=589). **f**, Chord plots representing the within and between strain correlations between
1418 the main *E. coli* phylogroups for the positive (left) and positive (right) correlations (n=8-13).

1419

1420 **Figure S5. Proteostasis at the host level is regulated by bacterial chaperones.** **a**, Left,
1421 normalized brightness of the worm reporters UBV::GFP over mCherry for worms fed on

1422 several bacterial species, where color represents each bacterial phylum. Right, representative
1423 fluorescence images from the worm fed on each bacterial species, measuring *UBV::GFP* and
1424 *mCherry* worm reporters. Correspondence between the two parts is done by a numeric code.
1425 (n=2-8) **b-c**, Western blot analysis of *Tubulin-UBV::GFP* (**b**) and *mCherry* (**c**) expression in *E.*
1426 *coli* chaperone and protease mutants. Each replicate (1-4) shows protein expression in various
1427 *E. coli* mutants: 1- BW25113 (control), 2- Δ *dnaK*, 3- Δ *dnaJ*, 4- Δ *lon*, 5- Δ *clpX*, 6- Δ *htpG*, 7-
1428 Δ *hscA*, 8- Δ *bepA*, and 9- Δ *cbpM*. *Tubulin* serves as a loading control. **d**, Ratio of the
1429 quantification of *UBV::GFP* over *mCherry* expression (n=4) (*P < 0.05, **P < 0.01, ***P <
1430 0.001, NS P > 0.05, one-way ANOVA).

1431 **Figure S6. Bacterial chaperones and proteases drive proteostasis regulation in the**
1432 **host. a**, Principal Component Analysis of the protein expression profile from *E. coli* BW25113
1433 control and Δ *dnaK*, Δ *clpX*, Δ *lon*, Δ *htpG* and Δ *cbpM* mutants. **b**, Network representation from
1434 differentially expressed proteins from Δ *dnaK*, Δ *clpX*, Δ *lon*, Δ *htpG* and Δ *cbpM* mutants,
1435 protein-protein interactions extracted from STRING database. Colours represent high (blue)
1436 and low (red) expression compared to the control strain BW25113. **c**, Normalised brightness
1437 of the worm reporters *UBV::GFP* over *mCherry* for worms fed on several bacterial chaperone
1438 and protease mutants. Stats are represented as coloured stars, black for the double Δ *dnaK*
1439 mutant vs Δ *dnaK* single mutant, blue for the comparison against the control strain BW25113,
1440 and red for the comparison against Δ *dnaK* mutant. (n=3-6, *P < 0.05, **P < 0.01, ***P < 0.001,
1441 NS P > 0.05, One-way ANOVA). **d**, Representative fluorescence images from the worm fed
1442 on each bacterial mutant tested in **a** and **c**. **e**, Representative fluorescence images from the
1443 worm fed on BW25113 (Control) and Δ *dnaK* and Δ *clpX* mutants living cells (top) and UV-
1444 irradiated cells (bottom). Fluorescence was measured for the *UBV::GFP* and *mCherry* worm
1445 reporters.

1446 **Figure S7 Growth curves and enrichment of transcriptional responses in *E. coli***
1447 **chaperone mutants. a**, Growth curves showing optical density at 595 nm plotted over time
1448 (hours) of wild-type BW25113 (control), Δ *clpX*, Δ *dnaK* and Δ *dnaK* Δ *clpX* double-mutant *E. coli*
1449 strains. **b**, PCA of the protein expression of *E. coli* strains BW25113 control and Δ *clpX*, Δ *dnaK*
1450 and Δ *dnaK* Δ *clpX* mutant strains. **c-d**, STRING-based KEGG pathway enrichment for genes
1451 differentially expressed in the *E. coli* Δ *clpX* mutant versus control, highlighting significantly
1452 upregulated (**c**) and downregulated (**d**) enriched pathways. Colour represents the FDR values
1453 and circle size the number of genes per category. **e-f**, STRING-based KEGG pathway
1454 enrichment for genes differentially expressed in the Δ *dnaK* mutant versus control, highlighting
1455 significantly upregulated (**e**) and downregulated (**f**) enriched pathways. Colour represents the
1456 FDR values and circle size the number of genes per category. **g**, STRING-based KEGG
1457 pathway enrichment for genes differentially expressed in the Δ *dnaK* Δ *clpX* double mutant

1458 compared with the $\Delta dnaK$ single mutant, highlighting significantly upregulated enriched
1459 pathways.

1460

1461 **Figure S8. Worm proteomics show an increase in metabolic pathways.** **a**, Principal
1462 Component Analysis of the protein profiles of *C. elegans* fed on *E. coli* BW25113 (Control) and
1463 mutants $\Delta dnaK$, $\Delta clpX$ and $\Delta dnaK\Delta clpX$. **b-c**, STRING-based KEGG pathway enrichment for
1464 genes differentially expressed in *C. elegans* fed with *E. coli* $\Delta dnaK$ mutant versus control,
1465 highlighting significantly upregulated (**b**) and downregulated (**c**) enriched pathways. Colour
1466 represents the FDR values and circle size the number of genes per category. **d-e**, STRING-
1467 based KEGG pathway enrichment for genes differentially expressed in *C. elegans* fed with *E.*
1468 *coli* $\Delta dnaK$ mutant versus control, highlighting significantly upregulated (**d**) and downregulated
1469 (**e**) enriched pathways. Colour represents the FDR values and circle size the number of genes
1470 per category. **f**, STRING-based KEGG pathway enrichment for genes differentially expressed
1471 in *C. elegans* fed with *E. coli* $\Delta dnaK$ versus $\Delta dnaK\Delta clpX$. Colour represents the FDR values
1472 and circle size the number of genes per category.

1473

1474 **Figure S9. Propionate and Vitamin B12 impact bacterial proteostasis.** **a**, Representative
1475 fluorescence images of the UBV::GFP and mCherry reporters from the worm fed on *E. coli*
1476 chaperone mutants $\Delta dnaK$, $\Delta tonB$, $\Delta dnaK\Delta clpX$ and $\Delta dnaK\Delta clpX\Delta tonB$. **b**, Fluorescence
1477 quantification of the reporters UBV::GFP and mCherry ratio in worms when fed on *E. coli* KO
1478 mutant strains (n=3-5). **c**, Fluorescence quantification of the reporters UBV::GFP and mCherry
1479 ratio in worms when fed on control *E. coli* BW25113 and mutants $\Delta dnaK$, $\Delta dnaK\Delta clpX$.
1480 Bacterial strains were supplemented with an over-expression (OE) plasmid in all conditions to
1481 test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05, Two-
1482 way ANOVA). **d**, Fluorescence quantification of the reporters UBV::GFP and mCherry ratio in
1483 worms when fed on control *E. coli* BW25113 and mutants $\Delta dnaK$, $\Delta dnaK\Delta clpX$, $\Delta dnaK\Delta clpX$
1484 $\Delta tonB$. Bacterial strains were supplemented with an over-expression (OE) plasmid in all
1485 conditions to test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P
1486 > 0.05, Two-way ANOVA). **e-f**, Representative fluorescence images of the UBV::GFP and
1487 mCherry reporters from the worm fed on control *E. coli* BW25113 and mutants $\Delta dnaK$, $\Delta clpX$,
1488 $\Delta dnaK\Delta clpX$ in control conditions and when supplemented with 150nM of vitamin B12 (**e**) and
1489 1-3mM of propionate (**f**). **g**, Growth curves showing optical density at 595 nm plotted over time
1490 (hours) of wild-type BW25113 (control), $\Delta dnaK$, Δasc , $\Delta dnaK\Delta asc$ double-mutant. *E. coli*
1491 OP50 and the OP50 mutant Δasc correspond to the green and yellow lines. **h**, Representative

1492 fluorescence images of the *UBV::GFP* and *mCherry* reporters from the worm fed on control *E.*
1493 *coli* BW25113 and mutants $\Delta dnaK$, Δscp and $\Delta dnaK\Delta scp$.

1494

1495 **Figure S10. *C. elegans* B12 shunt pathway drives propionate metabolism and UPS**
1496 **impairment.** **a**, Representative fluorescence images of the *UBV::GFP* and *mCherry* reporters
1497 from *C. elegans* N2 strain (control) and worm mutants *acd-1(0)*, *mce-1(0)* and *hphd-1(0)* fed
1498 on *E. coli* BW25113 in control conditions and when 150nM B12 was supplemented. **b**,
1499 Representative fluorescence images of the *UBV::GFP* and *mCherry* reporters from *C. elegans*
1500 N2 strain (Control), *acd-1(0)*, *hphd-1(0)* in combination with KO Empty Vector (EV), *suca-1*,
1501 *oxct-1*, *alh-8* strains fed on *E. coli* BW25113. **c**, Fluorescence quantification of the reporters
1502 *UBV::GFP* and *mCherry* ratio in the worm strains from **b**. Stars describe the significance, the
1503 colour describes to what control have they been tested (n=4, *P < 0.05, **P < 0.01, ***P <
1504 0.001, NS P > 0.05, one-way ANOVA). **d**, Representative fluorescence images of the
1505 *UBV::GFP* and *mCherry* reporters from *C. elegans* N2 strain fed with control *E. coli* BW25113,
1506 $\Delta acoA$ and $\Delta acoB$ mutants in control conditions and when 10 mM of acetoacetate were
1507 supplemented.