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ABSTRACT 29 
 30 
Understanding how bacterial diversity at strain level resolution shapes host physiology is a 31 
central challenge in microbiome research. The vast, functionally unknown genetic diversity 32 
within a species pangenome makes it difficult to connect genes to function and their impact 33 
on host physiology. Here, we explore how the functional landscape of the Escherichia coli 34 
pangenome impacts transcriptional responses in Caenorhabditis elegans and show that 35 
traditional gene-centric methods fail to provide significant functional associations with the host. 36 
Thus, we developed a pangenome framework that leverages the protein language model 37 
ProtT5 and generates unique strain embeddings representing the functional potential of each 38 
9,558 E. coli isolate. Stratification of the pangenome into distinct functional guilds aligned with 39 
key host processes such as cell division, metabolism and proteostasis. Further, we identify a 40 
critical interplay between the extensive network of bacterial chaperones and proteases in 41 
regulating host proteostasis. We find that the bacterial chaperone DNAK/HSP70 and protease 42 
ClpX fine-tune the host ubiquitin-proteasome system by controlling propionate and vitamin 43 
B12 availability. These findings reveal a conserved ‘co-proteostasis’ mechanism as a key 44 
phenomenon modulating host-microbe interactions through metabolic communication. Our 45 
pangenome-to-phenotype approach offers a powerful strategy to decode bacterial 46 
pangenome functional diversity, directly linking microbial genomic variation to host 47 
physiological outcomes.  48 
 49 
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INTRODUCTION 51 
 52 
The metabolic capacity of the host is vastly expanded by its resident microbiome, yet 53 
correlating specific microbial signatures with physiological outcomes remains a fundamental 54 
challenge. Animal models such as Caenorhabditis elegans have been successfully 55 
repurposed as biosensors to study the mechanisms underlying host-microbe interactions1-3. 56 
However, while strain-specific impacts on host physiology are increasingly recognized, the 57 
vast genetic diversity within individual bacterial species remains largely underexplored. 58 
Current strategies relying on phylogenetic markers or linear reference genomes fail to fully 59 
capture this functional potential, leaving a gap in our ability to predict how intra-species genetic 60 
heterogeneity drives distinct host phenotypes4. The E. coli pangenome represents a vast 61 
reservoir of uncharted metabolic potential given its ecological ubiquity and open genomic 62 
architecture5,6. For instance, distinct E. coli strains elicit divergent host responses through 63 
differential production of metabolites, such as vitamin B12 or betaine7-9. Yet, standard 64 
laboratory strains often used to study these interactions capture only a fraction of this natural 65 
diversity10. Consequently, we require analytical frameworks that move beyond sequence 66 
identity to capture the latent functional potential of bacterial proteomes and map them directly 67 
to host physiology, thereby bridging the gap between reductionist models and the complex 68 
reality of natural microbiomes11.  69 
 70 
Here, we bridge this gap by combining high-throughput transcriptomics of C. elegans with a 71 
novel machine-learning approach that utilizes the protein language model (pLM) ProtT512 to 72 
recreate the functional landscape of a pangenome of 9,558 E. coli assemblies. We integrated 73 
the geometrical representation from the pLM with the genetic background of the strains to 74 
generate strain embeddings, vector representations encapsulating the total functional 75 
potential of a bacterial strain. By exposing C. elegans to a diverse library of 592 E. coli strains, 76 
we demonstrate that the geometry of the bacterial embedding space accurately predicts host 77 
phenotypic variance, revealing a profound link between the microbial pangenome and host 78 
proteostasis. We identify a cross-domain co-proteostasis mechanism where the bacterial 79 
chaperone network (DnaK/ClpX) regulates vitamin B12 and propionate metabolism, dictating 80 
metabolic rewiring in the host through B12-dependent or independent metabolic shunt that 81 
regulates host ubiquitin-proteasome system (UPS) function. 82 
  83 
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RESULTS 84 
 85 
The E. coli pangenome elicits a vast range of transcriptomic profiles in C. elegans 86 
E. coli is known to have an open pangenome6, meaning that the various strains within the E. 87 
coli species contain unique genes coding for proteins whose functions are essential for their 88 
distinct functional properties. We hypothesized that the extensive genetic variation within the 89 
E. coli pangenome dictates host responses. To interrogate these host responses to individual 90 
bacterial strains, we generated high-resolution bulk RNAseq transcriptional profiles for 592 91 
distinct E. coli – C. elegans mono-association pairs (Fig. 1a). We curated a library combining 92 
the EcoRef collection and additional strains with broad phylogenetic coverage (Fig. 1b)6,10. 93 
This panel spans the major E. coli phylogroups, evolutionary lineages defined by specific gene 94 
markers that are traditionally linked to distinct ecological roles and primarily comprises 95 
commensal strains isolated from human and animal hosts (Fig. 1c; Extended Data Fig. 1a), 96 
with roughly 50% belonging to phylogroup B2. Analysis of the strain genomes confirmed an 97 
open pangenome architecture: a conserved core of 3,265 gene families (>95% presence), a 98 
shell genome of 2,589 gene families (15% - 95% presence), and a diverse and large cloud 99 
genome of 20,113 rare gene families (<15% presence) (Fig. 1d). This distribution highlights 100 
the immense reservoir of genetic diversity available to influence host physiology. Next, we 101 
profiled the host response by raising synchronized C. elegans (N2) on each bacterial strain 102 
and sequencing total RNA from Day 1 adults. Following rigorous quality filtering and batch 103 
effect correction (Extended Data Fig. 1b-d), we established a robust transcriptional dataset 104 
comprising 16,410 unique genes. This yielded high-coverage data with an average of 8,545 ± 105 
254 transcripts detected per sample (Extended Data Fig. 1e). Remarkably, we found that the 106 
commonly used laboratory strain E. coli OP50 used for most studies in classic genetics and 107 
aging related publications induces a transcriptional profile in C. elegans distinct to the 108 
transcriptional signatures of the majority of strains (Fig. 1e), including the K-12 MG1665 lab 109 
strain whose genome was one of the first E. coli reference sequences to be completed and 110 
extensively curated. 111 
 112 
Next, we investigated whether grouping strains by phylogroup, as a proxy for bacterial 113 
function, would reveal a structure in the worm transcriptional response to the E. coli strain 114 
panel. The whole transcriptional profiles were correlated to the phylogroup partitioning of the 115 
E. coli pangenome and variance explained by this functional division was measured. Principal 116 
component analysis (PCA) revealed a modest separation between the phylogroups included 117 
in this screening (Fig. 1f), consistent with a weak clustering of pairwise Euclidean distances 118 
between strains (Extended Data Fig. 1d). Moreover, a permutational analysis of variance 119 
(PERMANOVA) for the full transcriptome dataset indicated a significant effect of phylogroup. 120 
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However, the model explained only approximately 1.5% variance. Nevertheless, the large 121 
Euclidean distance in transcriptional responses observed between strains known to elicit a 122 
distinct physiological response in the worm such as OP50 and MG1655 (Extended Data Fig. 123 
1f), suggests that a robust biological signal exists within this transcriptional landscape. To 124 
facilitate mapping the worm response onto the E. coli pangenome, we reasoned that clustering 125 
the normalized read counts to discrete functional categories would improve our ability to map 126 
worm response. For this, the curated worm database from Holdorf et al.13 was leveraged and 127 
normalized read counts were aggregated for all genes within each functional category at the 128 
three defined hierarchical levels defined in the database (Fig. 1a). This yielded three matrices 129 
of increased granularity, ranging from 33 broad categories (level 1) to 461 highly specific 130 
functional categories (level 3). This stratification generated a dense phenotypic landscape 131 
comprising 272,912 phenotypic worm data points at level 3 functional category resolution. 132 
PCA for each category (Fig. 1g) revealed a complex landscape where simple patterns remain 133 
elusive, underscoring the difficulty of mapping pangenome structure onto worm responses 134 
using traditional means. While PERMANOVA testing for level 3 functional categories identified 135 
a statistically significant effect (P= 0.041), the low variance explained (1.45%) highlights that 136 
evolutionary history alone is a minor driver of host phenotype. Together, these results show 137 
that C. elegans mounts highly-strain specific responses to E. coli strains, both at the whole 138 
transcriptional level and at the functional category levels. This confirms that the openness and 139 
complexity of the E. coli pangenome pose a high-dimensional biological challenge that cannot 140 
be fully captured by a standard phylogenetics approach. 141 
 142 
The functional content of E. coli is encoded in the protein embedding space 143 
The genetic repertoire of commonly used laboratory strains represents only a fraction of the 144 
total species diversity 5. However, there is a consensus supporting that E. coli clades, whether 145 
classified from multi-locus sequence typing (MLST) or broader phylogroup classification, 146 
harbor characteristic functional enrichments associated with their primary ecological 147 
niche6,10,14. Given the shortcomings of current approaches, to systematically investigate the 148 
functional diversity of the E. coli pangenome, we established a comprehensive panel of 149 
genome assemblies to fully capture this functional richness. We accessed the NCBI Genomes 150 
database (Jan 2024) and selected 8,829 high-quality genome assemblies, to which we added 151 
assemblies for the strains available in our laboratory, yielding a total of 9,558 high-quality 152 
genomes (see Methods, Extended Data Fig.1g). Phylogroup proportions in this extended 153 
collection followed a similar pattern as in our laboratory panel (Fig. 2b, R = 0.82, p = 0.014, 154 
Extended Data Fig. 2a). This resulted in a total of 92,435 gene families split into a core of 155 
3,005 genes, a shell of 2,917 genes, and a cloud of 86,513 genes (Fig. 2a). Consistent with 156 

previous work, the E. coli pangenome remained open as indicated by the Heap’s law fit (g = 157 
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0.28, Extended Data Fig. 2b). However, we observe that new functions start to saturate, with 158 
the core genome rapidly stabilizing. Additionally, the pairwise genetic similarity for this larger 159 
panel is similar to our laboratory panel (Jaccard similarity of 0.641 and 0.65 respectively, 160 
Extended Data Fig. 2c). Phylogeny on the core genome shows that E. coli robustly follows the 161 
phylogroup evolutionary lineages (Fig. 2c). When considering gene presence-absence 162 
patterns within the cloud genome as a proxy for differential functional content, strain 163 
relationships strongly follow the same phylogenetic structure (Fig. 2d). This congruence 164 
between core genome phylogeny and total gene content demonstrates that a shared 165 
evolutionary history shapes the full genomic repertoire of E. coli, linking deep ancestry to 166 
functional gene repertoire at the strain level.  167 
 168 
To characterize functional content, four gene ontology (GO) annotation strategies were 169 
benchmarked by leveraging the linear reference of representative gene families. The most 170 
widely used methods rely on sequence similarity which favors accuracy at the cost of limited 171 
range. Recently, the development of methods relying on machine learning (ML) models have 172 
been proven to achieve significant improvements in quality and coverage15. The 4 methods to 173 
predict GO terms included Interproscan16 and eggNOG-mapper17, which are based on 174 
sequence similarity, and ML methods such as  Proteinfer18, a Convolutional Neural Network 175 
method, and GoPredSim19, which leverages the protein language model (pLM) ProtT5-XL-176 
BFD12 by creating an embedding representation for each protein. ML-based approaches 177 
annotated substantially more genes per genome than sequence-similarity based methods 178 
(41.7-52.7% increase, Extended Data Fig. 2d, p<0.001, one-way ANOVA). This difference 179 
was primarily driven by annotations in the cloud and shell genomes where unique sequences 180 
are mostly found (Extended Data Fig. 2e,f). Despite this significant improvement, 2,873 gene 181 
families remained unannotated. Exploiting the hierarchical information contained in GO 182 
annotations, an analysis of the maximum information content per gene and method revealed 183 
that the GoPredSim, which leverages the pLM ProtT5 embeddings, produced the most 184 
informative annotations (Extended Data Fig. 2g). These results underscore that much of the 185 
accessory functional landscape from E. coli remains largely uncharacterized but can be more 186 
effectively represented using pLM embedding-based models, given the prediction abilities and 187 
breadth of information. 188 
 189 
Protein embeddings from the ProtT5-XL-BFD pLM were then used to create a comprehensive 190 
functional map of the E. coli pangenome (Fig. 1a, Extended Data Fig.1g). PCA of the resulting 191 
high-dimensional embeddings revealed a spatial organization aligned with pangenome 192 
structure (Fig. 2e, Extended Data Fig. 2h). The core genome occupies a compact, dense 193 
region of the space, which expands through the shell genome and into the vast, sparsely 194 
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populated region occupied by the cloud genome with significant differences between these 195 
compartments (Fig. 2f, Extended Data Fig. 2h, p < 0.001, one-way ANOVA). This geometric 196 
arrangement demonstrates that the embedding space quantitatively captures functional 197 
diversity, transitioning from the conserved core functions to the diverse and mobile cloud 198 
genome. Analysis of the COG categories further show that core-associated functions such as 199 
energy production and conversion (C) or cell cycle control(D) are enriched in the dense core 200 
region. However, functions known to be environment-dependent such as carbohydrate 201 
transport (G), defense mechanisms (V) or poorly characterized (S) are shifted towards the 202 
periphery (Figure 2g,h,i, Extended Data Fig. 2i,j,k). Collectively, these results establish that 203 
the geometry of the protein embedding space created through the pLM ProtT5 acts as a 204 
quantitative proxy for the pangenome’s functional architecture.   205 
 206 
Given that the functional content of a pangenome is encoded in the geometry of the protein 207 
embedding space, we extended this framework to establish a microbial strain identity, defined 208 
by the combination of its conserved core functions and unique set of accessory functions.  209 
Each strain was embedded as a single vector by combining binary gene content 210 
(presence/absence) with the corresponding protein embeddings, calculated as an average of 211 
all protein vectors considering the whole gene content (see Methods section), yielding a 212 
unique representation per strain that determines their functional potential. PCA of these strain 213 
embeddings produced a pangenome-level functional landscape in which strains are 214 
positioned according to functional capacity (Fig. 2j, Extended Data Fig. 2l). The principal 215 
component analysis of the strain embeddings revealed a structured functional landscape that 216 
validates our model while highlighting the limitations of pure phylogeny approaches (p < 0.001, 217 
one-way ANOVA, Extended Data Fig. 3b). PC2 (14.68%) cleanly separated phylogroups, 218 
confirming that the embeddings correctly encoded the strains’ evolutionary history, whereas 219 
PC1 (35.45%) was driven by within-phylogroup variability. This analysis proves that the vast 220 
majority of E. coli functional diversity is driven by strain-specific adaptations. This pattern is 221 
captured by alternative embedding methods, supporting the robustness of these findings 222 
(Extended Data Fig. 3a,c). We observe the strain embeddings recaptures the clusters defined 223 
by ecology and evolution where phylogroups A, B1 and C formed a clearly defined cluster, 224 
followed by a distinct cluster composed of phylogroups D, E, F and G bridging towards the 225 
phylogroup B2, which occupied a distinct, distant region. This separation of phylogroups along 226 
PC2 supports the evolutionary history between the phylogroups (Fig.2i). Together, these 227 
results demonstrate that protein language model embeddings provide a powerful, compact 228 
representation of both genes and whole genomes, enabling the encoding of E. coli 229 
pangenome structure, the delineation of conserved versus accessory functions, and the 230 
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representation of entire strains as single, functionally meaningful vectors that can be directly 231 
linked to host phenotypes. 232 
 233 
Host physiology maps onto the strain embeddings functional landscape 234 
We next hypothesized whether using the E. coli strain embeddings would improve our ability 235 
to establish causal links between microbial functions and host physiology at the pathway level. 236 
To this end, we leveraged the geometry of the PCA projection coordinates derived from the 237 
strain embeddings as a functional map to position C. elegans transcriptional and functional 238 
categories (Fig. 1a). The strain embedding map for the subset of E. coli strains used in 239 
monoassociation experiments recapitulated the distinctive structure observed for the full 240 
pangenome map, revealing a clear separation within and between phylogroups along PC1 241 
and PC2 coordinates, respectively (Fig. 3a). To connect E. coli pangenome functional 242 
landscape and the worm physiology, we calculated the Spearman correlations between the 243 
level 3 pathway categories in the worm transcriptome to the PC1 and PC2 coordinates of the 244 
strain embeddings. This analysis revealed a distinct set of host functional categories regulated 245 
at the pangenome level (Fig. 3b). Notably, all significant correlations between host pathways 246 
and strain embedding axes were linked to PC2, which separates the distinct phylogroups in 247 
the pangenome (Fig. 3c, Extended Data Fig. 3d). The significant pathways involved in the host 248 
physiology regulation at the pangenome level, clustered into biologically broad processes 249 
including cell cycle, central and one-carbon metabolism, proteostasis and response to stress 250 
(Fig. 3d, p < 0.05, BH correction). These processes have been formerly linked to the regulation 251 
of several host phenotypes, including development and aging20-22. Together, these findings 252 
suggest that functional variation across the E. coli pangenome encodes regulatory signals that 253 
can modulate core host physiological programs.  254 
 255 
Given the E. coli pangenome functional landscape - host physiology connections, we sought 256 
to validate these associations experimentally. We performed a reporter-based quantitative 257 
screen of 13 fluorescent transcriptional or translational reporters representing key genes 258 
within the main pathways identified in the functional mapping (Extended Data Fig. 4a). We 259 
confirmed the robustness of the experimental pipeline by testing two independent biological 260 
replicates over 589 E. coli pangenome strains for each reporter (Pearson correlation > 0.7, 261 
Extended Data Fig. 4b). We then mapped the reporter gene expression levels to the E. coli 262 
strain embeddings and found that all 13 gene reporter expression profiles significantly 263 
correlated with the strain embedding geometrical projection, mirroring the transcriptional 264 
landscape pattern observed (Fig. 3e, p < 0.05, BH correction). Next, we leveraged these data 265 
to obtain further insights between microbe-host functional relationships. Plotting reporter 266 
expression by strain revealed distinct transcriptional programs which were largely independent 267 
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of their phylogenetic relatedness (Extended Data Fig. 4c). Similarly, pairwise strain 268 
correlations of reporter activity indicated that bacterial functional guilds transcended 269 
phylogenetic relatedness on regulating specific host transcriptional responses (Fig. 3f,g, 270 
Extended Data Fig. 4d). Interestingly, we observed a global bias towards positive associations 271 
between strain pairs (~65%, Extended Data Fig. 4e, f), implying a shared host transcriptional 272 
response across the E. coli pangenome. Consistent with this, we observed  significant pairwise 273 
correlations between the 13 reporters (Fig. 3h). 274 
 275 
Together, these results show that the E. coli functional landscape can be quantitatively 276 
mapped onto the host transcriptional and physiological programs by leveraging strain 277 
embeddings, uncovering bacterial-driven regulation of fundamental host processes such as 278 
central and 1CC metabolism, stress response, or proteostasis. Based on these findings, we 279 
next examined how E. coli influences host proteostasis, which remain insufficiently 280 
characterized in this context.  281 
 282 
Propionate and vitamin B12 at the interface of bacterial-host “co-proteostasis” 283 
In eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a central role in maintaining 284 
proteostasis by controlling the degradation of damaged proteins. Yet, how the UPS integrates 285 
environmental signals to support organismal physiology remains poorly understood. First, we 286 
grew the C. elegans ubiquitin-proteasome (UPS) reporter strain23 on individual bacterial 287 
isolates from distinct phyla of the C. elegans microbiome24. Host proteostasis displayed strong 288 
bacterial strain-dependent variation (Extended Data Fig. 5a, as observed for the E. coli 289 
pangenome (Extended Data Fig. 4c) and E. coli laboratory strains25, suggesting fine levels of 290 
mechanistic regulation. To identify the underlying mechanism(s), we performed a qualitative 291 
screen using the UPS worm reporter strain, together with the single deletion E. coli KEIO 292 
library and found that deletion of the protease Lon and the homolog of the heat shock protein 293 
HSP70/DnaK/DnaJ significantly decreased or increased UPS fluorescence, respectively. This 294 
led us to hypothesize that bacterial proteostasis could regulate host proteostasis. Next, we 295 
quantitatively tested all known E. coli chaperones as well as proteases (Fig. 4a). We confirmed 296 
that deletion of the functional DnaK and DnaJ heat shock pair increased UPS fluorescence 297 
and respective protein levels, while deletion of Lon, ClpX, BepA proteases and HtpG, HscA, 298 
CbpM chaperones (Fig. 4b,c; Extended Data Fig. 5b-d) significantly reduced UPS 299 
fluorescence and protein levels.  300 

To better understand the regulatory networks between these chaperones and proteases and 301 
the potential mechanisms involved in the regulation of host proteostasis, we performed 302 
proteomics of each individual mutant strain. Deletion of dnaK led to pronounced changes in 303 
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the proteome landscape followed by the deletion of lon and clpX (Extended Data Fig. 6a). We 304 
observed an intricate compensatory mechanism whereby the single deletion of any of these 305 
proteases or chaperones leads to significant changes in a network of other chaperones and 306 
proteases (Extended Data Fig. 6b), with greater effects observed for dnaK and clpX mutants. 307 
Thus, we tested whether co-regulatory effects of proteases and chaperones could regulate 308 
host UPS response through the creation of double-mutant E. coli strains of dnaK. Notably, 309 
only the combined loss of dnaK and clpX abolished the UPS activation induced by the dnaK 310 
mutant alone (Fig. 4e, Extended Data Fig. 6c,d) without compromising bacterial fitness 311 
(Extended Data Fig. 7a). U.V-irradiation experiments to abolish metabolic activity of E. coli 312 
and alter their metabolome26, further show that UPS regulation was dependent on the active 313 
metabolism of E. coli (Fig. 4f, Extended Data Fig. 6e). To identify the potential mechanism(s) 314 
responsible, we performed proteomics in both single and double E. coli mutants (Fig. 4g, 315 
Extended Data Fig. 7) as well as in worms grown on these bacteria (Fig. 4h, Extended Data 316 
Fig. 8). Despite functional rescue at the host level, the dnaKclpX double mutant exhibited a 317 
unique proteomic signature distinct from both single mutants and wild-type E. coli (Extended 318 
Data Fig. 7b), as well as in worms (Extended Data Fig. 8a). KEGG analysis in both E. coli 319 
(Extended Data Fig. 7c-g) and C. elegans (Extended Data Fig. 8b-f) with a focus on the 320 
comparison between up and downregulated proteins of dnaKclpX versus dnaK (Fig. 4g-h), 321 
which links to the loss of dnaK effects on host UPS, showed enrichment of central carbon and 322 
amino acid metabolism pathways—particularly branched-chain amino acid (BCAA previously 323 
identified as an important UPS regulator27) and propionate metabolism, two directly connected 324 
metabolic pathways through the sharing of propionyl-CoA—suggesting a role for metabolic 325 
cross-talk in modulating host proteostasis. To determine how E. coli regulated BCAA and 326 
propionate metabolism, we compared all proteins that were significantly down-regulated in 327 
dnaK mutants while up-regulated in both clpX and dnaKclpX mutants (Fig. 4i). From the 33 328 
proteins shown to be significant in these comparisons, the tree proteins of the TonB-ExbB-329 
ExbD energy transduction complex were strongly enriched for the Gene Ontology Molecular 330 
function of energy transducer activity (FDR=0.0111, Strength=2.1) which are involved in the 331 
transport of iron and vitamin B12 (VB12)28. Given the well described role of bacterial VB12 in 332 
the regulation of BCAA and propionate homeostasis in the host22, we investigated whether 333 
VB12 and/or propionate metabolites regulated UPS proteostasis. First, we created triple 334 
mutants of all known iron transporters in E. coli and observed that only the deletion of TonB 335 
significantly increased the levels of UPS fluorescence when compared to the effect observed 336 
when fed dnaKclpX mutants (Fig. 4j, p=0.0008, Extended Data Fig. 9a, b) suggesting a 337 
regulation of TonB levels by DnaK that are controlled by ClpX. Consistent with this 338 
observation, the overexpression of TonB in a dnaK or dnaKclpX mutant significantly reduced 339 
UPS levels (Extended Data Fig. 9c). Overexpression of BtuB protein, a specific transporter of 340 
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VB12, also reduced dnaKclpX levels to baseline levels (Extended Data Fig. 9d) and this 341 
required TonB, confirming that canonical tonB-BtuB-dependent VB12 transport is central to 342 
this regulatory axis. Supplementation of VB12 uniformly decreased UPS levels in all bacterial 343 
mutant backgrounds (Fig. 4k, Extended Data Fig. 9e) but significant differences in UPS levels 344 
between them suggested the role of additional metabolites shaping host proteostasis. Given 345 
the role of VB12 in regulating propionate metabolism, we supplemented propionate and found 346 
that propionate increased UPS levels in worms fed control bacteria and dnaKclpX mutants but 347 
not dnaK (Fig. 4I, Extended Data Fig. 9f). Together with our proteomic data (Fig. 4g), it 348 
suggested a role for propionate as a potential metabolite regulating host proteostasis. Deletion 349 
of the sbm operon, which encodes enzymes for the “sleeping beauty” mutase pathway that 350 
converts BCAAs—particularly isoleucine—into propionate29, abolished the dnaK-induced UPS 351 
increase without affecting bacterial fitness (Fig. 4m, Extended Data Fig 9g,h), directly linking 352 
bacterial propionate production to host UPS activation. 353 

In C. elegans, propionate catabolism proceeds through a VB12-dependent canonical pathway 354 
and a VB12-independent “propionate shunt,” whose activation can be monitored by the acdh-355 
1p::GFP reporter22. Worms fed dnaK mutants showed increased acdh-1 levels, indicating 356 
elevated flux through the VB12-independent shunt, whereas worms fed dnaKclpX bacteria did 357 
not (Fig. 4n), consistent with proteomic evidence that dnaKclpX suppresses dnaK-driven 358 
metabolic rewiring. Genetic inhibition of the shunt downstream of acdh-1 (e.g., hphd-1, alh-8) 359 
or the canonical pathway (e.g., mce-1) elevated UPS activity (Fig. 4o, Extended Data Fig. 10a-360 
c), while VB12 supplementation reduced UPS levels in wild-type and acdh-1 mutants but not 361 
in mce-1 or hphd-1 mutants, demonstrating that the balance between VB12-dependent and -362 
independent propionate catabolism determines the impact of propionate on proteostasis. 363 
Proteomic analyses of worms fed dnaK versus dnaKclpX bacteria revealed enrichment of 364 
pathways linked to ketone metabolism (Fig. 4h), aligning with previous reports that 365 
perturbations in propionate catabolism can alter ketone body pathways30. RNAi of suca-1, 366 
which contributes to conversion of acetoacetate to acetoacetyl-CoA (Extended Data Fig 10b), 367 
increased UPS activity, whereas exogenous acetoacetate supplementation (independent of 368 
its degradation by atoA or atoB) decreased UPS levels (Fig. 4p, Extended Data Fig 10d) , 369 
suggesting that ketone intermediates can directly modulate host proteostasis. 370 

Collectively, these findings define a mechanistic chain in which bacterial DnaK–ClpX–TonB–371 
BtuB control bacterial proteostasis and VB12 transport, thereby shaping propionate production 372 
and routing in the host, which in turn determines the balance between toxic VB12-independent 373 
catabolites and protective VB12-dependent flux, ultimately tuning UPS activity and 374 
proteostasis in C. elegans. 375 
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DISCUSION 377 
 378 
Metagenomic sequencing and other state-of-the art technical advances now enable high 379 
throughput, high-resolution scale analyses of microbial strains across diverse and complex 380 
ecosystems ranging from the human gut to marine and soil environments. Strain-level 381 
resolution has recently been shown to be crucial in microbiome research and in dictating 382 
microbe-host interactions. For example, strains of the same species can have diametrically 383 
opposed functional, ecological, and clinical manifestations, with species-level identification 384 
often leading to erroneous interpretations31. Strain-level characterization has also been 385 
emphasized in how bacterial strains are transmitted in human populations, highlighting the 386 
importance of the need to consider their biological effects 32,33. Escherichia coli has become a 387 
canonical example of the diversity displayed by a bacterial species, showing that its vast 388 
accessory genome harbored in its open pangenome contains an extensive array of bacterial 389 
functions that can potentially alter host physiology6,10. Our panel shows that any two given 390 
strains can differ by more than 50% of their genetic content. A central challenge in 391 
understanding the microbiome is reconciling the inherent genetic diversity contained within 392 
bacterial species and how this affects host physiology34,35.  393 
 394 
Here, we present the most comprehensive analysis to date of how strain level variation within 395 
a single bacterial species shapes host responses. Given the challenge in defining bacterial 396 
functions for the poorly described microbial accessory genes, methods based in the 397 
transformers architecture have been trained over large protein databases creating physical 398 
representations of the protein space encoded in the microbiome36,37. In this work, we 399 
leveraged the protein embeddings predicted by the pLM12 to study the latent functional 400 
landscape encoded in the E. coli pangenome. By compressing the genomic and functional 401 
information encoded in thousands of E. coli strains into unified “strain embeddings”, we 402 
created a geometric map that captures the potential function per strain, which can be mapped 403 
onto the host phenotype it elicits. By building a high-throughput panel of strain-host mono-404 
association spanning hundreds of E. coli strains, we have established an experimental 405 
platform validating our computational approach and providing additional mechanistic insights. 406 
Together, our data uncovers several fundamental principles in microbe-host biology at the 407 
strain level. 1) Each strain elicits a unique molecular signature in the host; 2) our data shows 408 
that the protein functions shared by every strain (the core) are located in a narrow geometrical 409 
space compared to the vast strain-specific functions, 3) strains within the same phylogroup 410 
display an ~60:40 of positively to negatively correlated effects on host responses; and 4) 411 
phylogenetic relatedness between strains does not predict the host molecular programs they 412 
induce. Our data supports the hypothesis that phylogeny, while important, is inadequate as a 413 
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single factor to link bacterial functions to host physiology.  Future work will be required to 414 
determine how strain-level effects manifest in the context of complex microbiota and to test 415 
whether these basic principles extend to other bacterial species with open or closed 416 
pangenomes.  417 
 418 
In line with this, the canonical laboratory microbial source for C. elegans, the Escherichia coli 419 
OP50 strain, elicits a distinct and divergent molecular response in the host compared with 420 
other E. coli strains (Fig. 1e). This observation is consistent with a growing number of studies 421 
incorporating multiple bacterial strains reporting strain-dependent mechanisms underlying 422 
diverse host phenotypes, including drug responses 38,39, behavior, reproduction, and lifespan 423 
21,40,41. Collectively, these findings suggest that the experimental convenience afforded by E. 424 
coli OP50 may be offset by the specific molecular and physiological signature it imposes on 425 
C. elegans, potentially failing to reflect the “true” wild-type biology of the host and motivating 426 
a critical re-evaluation of the foundational literature of an entire field. This may possibly be 427 
better captured using native microbiome C. elegans strains or alternatively, commensal E. coli 428 
strains employed in this study. Using a protein-embedding framework, this work supports 429 
these claims as it identifies a broad repertoire of bacterial functions, spanning many COG 430 
functional categories with known effects on host physiology, that are regulated at the level of 431 
the bacterial pangenome. Among the most significantly enriched categories is proteolysis. 432 
Notably, recent work has demonstrated that differences in bacterial-derived RNAs between E. 433 
coli OP50 and HT115 can trigger a systemic response in C. elegans that protect against 434 
protein aggregation during aging42. Likewise, the present study reveals pronounced 435 
differences among E. coli strains (Extended Figure S4a) and strains belonging to bacterial 436 
species from other phyla (Extended Figure S5a) in their ability to modulate the host ubiquitin–437 
proteasome system. Here, we demonstrate that key bacterial proteostasis regulators control 438 
host UPS activity by modulating the availability of vitamin B12 and propionate, which in turn 439 
dictates the flux through host propionate degradation pathways. Bacteria that produce or 440 
efficiently scavenge B12 can control community composition and metabolic activity by 441 
outcompeting B12-dependent neighbors 43,44. For example, B12 production by Eubacterium 442 
hallii enables Akkermansia muciniphila to convert succinate to propionate, shifting succinate 443 
levels, and thereby reshaping the surrounding metabolic network 45. Here, an unanticipated 444 
mechanism is described in which the DnaK/J chaperone system and the ClpX protease act in 445 
concert to fine tune B12 and propionate levels. While this regulatory axis may have evolved 446 
primarily to modulate microbial community interactions, it also alters host proteostasis, giving 447 
rise to what can be conceptualized as microbe–host “co-proteostasis” derived from microbe-448 
host co-metabolism cues.  449 
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FIGURE LEGENDS 643 
 644 
Figure 1. The physiology of C. elegans is regulated at the E. coli pangenome scale. a, 645 
Schematic representation of experimental and analytical workflow: C. elegans transcriptomes 646 
were profiled for each of the 592 E. coli strains and then summarized in WormCat functional 647 
categories. The E. coli pangenome was calculated for 9,558 strains and its linear reference 648 
was used to geometrically represent the functional potential per strain with the pLM ProtT5. 649 
Both biological layers were used to map host-microbe functional landscapes.  b, Phylogenetic 650 
tree computed from the core genome fraction of the 592 E. coli strains panel with tips colored 651 
following the major phylogroups. The tree branch length reflects genetic distances. c, Pie chart 652 
showing the distribution of gene families belonging to the core (>95% presence), shell (95% 653 
to 15% presence), or cloud (<15% presence) genome across the 592 E. coli strains. d, 654 
Distribution of E. coli phylogroups across the 592 E. coli strains. e, Representation of the 655 
transcriptional distance between two common E. coli lab strains belonging to the same 656 
phylogroup, MG1655 and OP50, which are known to induce differences in the worm 657 
physiology. f, Principal component analysis (PCA) of the whole C. elegans transcriptional 658 
profiles. Each point representing animals raised on a single E. coli strain and colored by the 659 
phylogroup of the corresponding strain. g, PCA of WormCat level 1, level 2 and level 3 660 
categories, depicting the functional landscape of C. elegans transcriptional responses to the 661 
E. coli strain panel. Each point represents the WormCat functional category for a given strain 662 
and colored by the phylogroup of the corresponding E. coli strain.  663 

 664 

Figure 2. The functional landscape encoded in the E. coli pangenome can be leveraged 665 
to create a functional map of the species. a, Pie chart showing the number of gene families 666 
assigned to the core (>95% presence), shell (95% to 15% presence), or cloud (<15% 667 
presence) genome across the 9 558 E. coli strains. b, Distribution of E. coli phylogroups across 668 
the 9 558 E. coli strains. c, Phylogenetic tree computed from a set of 275 conserved genes 669 
from the core genome of the 9,558 E. coli strains. Tips are colored following the major 670 
phylogroups and the tree branch lengths reflect genetic distances. d, PCA of gene 671 
presence/absence across the cloud genome of the E. coli strain panel. Each point represents 672 
a strain, colored by phylogroup. e, PCA projection of protein embeddings with 673 
Orange/Pink/Green representing genes belonging to the cloud/shell/core genome 674 
respectively. f, Violin plots with box plots embedded representing the distribution from the 675 
genome fractions per principal component (n = 92,244; p<0.001, One-way ANOVA). g, PCA 676 
projection of protein embeddings for genes belonging to the COG category C, Energy 677 
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Production and Conversion. h, PCA projection of protein embeddings for genes belonging to 678 
the COG category S, Unknown. i, Box plots of the PCA coordinates per COG category 679 
belonging to the major category of Metabolism and Poorly Characterized (n = 33-18,050). (NS 680 
P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, two-tailed pairwise T-test with BH). j, PCA 681 
projection of the 9,558 E. coli strain embeddings, colored and split by their respective 682 
phylogroups. 683 

 684 

Figure 3. E. coli strain embeddings map bacterial functional landscape onto host 685 
functional responses. a, PCA projection for the 592 E. coli strain embeddings included in the 686 
RNA-seq screen with points colored by phylogroup. b, PCA projection of the 592 E. coli strain 687 
embeddings with dots colored by Methionine functional scores derived from C. elegans 688 
transcriptomes. (n = 592, Spearman correlation, *P < 0.05, **P < 0.01, ***P < 0.001). c, 689 
Spearman correlation plots for the two Principal Components with the Methionine functional 690 
scores. Spearman correlation coefficient is represented as the ρ value (n = 592). d, Bubble 691 
plot summarizing Spearman correlation coefficients (ρ) for significant WormCat functional 692 
categories and PC2 of the strain-embedding PCA across the 592 strains. e, Spearman 693 
correlations between the PC2 of the strain embeddings PCA and biologically relevant C. 694 
elegans gene reporter phenotypes. Each facet shows the relationship between PC2 of the E. 695 
coli strain-embedding PCA (x-axis) and normalized mean reporter intensity from the high-696 
throughput imaging screen (y-axis) for each C. elegans gene reporter. Spearman correlation 697 
coefficients (ρ) and significance are represented for each case. f-g, Strain-strain Pearson 698 
correlation heat map derived from the C. elegans gene reporter. Strains are clustered by their 699 
phylogenetic distances (f) or by their reporter activity (g) and colored by phylogroup (n = 589). 700 
h, Pearson correlation between C. elegans gene reporter data shown as circles (lower 701 
triangle) and correlation values (upper triangle) (n = 589).  702 

 703 

Figure 4. Proteostasis state in E. coli regulates proteostasis regulation at the host level. 704 
a, Normalized brightness of the worm reporter UBV::GFP as a ratio of GFP over mCherry 705 
(UPS fluorescence) fed on E. coli knock-out for proteins involved in bacterial proteostasis 706 
(n=3-8). b, Fluorescent microscope images of the worm reporters UBV::GFP fed on E. coli 707 
significant mutants identified in a. c, GFP and tubulin (housekeeping protein) quantification 708 
with western blot normalized over mCherry for the significant proteins (n=4). d, Bi-partite 709 
network representation of the proteome derived from the KO E. coli gene ΔdnaK, Δlon, ΔclpX 710 
and ΔcbpM compared to the control strain. Nodes are bacterial strains (orange) and significant 711 
proteins (grey). Edges represent protein expression (red for increased, blue for decreased) 712 
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and protein-protein interactions from STRING (grey). e, Normalized UPS fluorescence of 713 
worms fed on BW25113 and mutants ΔdnaK, ΔclpX and ΔdnaKΔclpX (n=4). f, Normalized 714 
UPS fluorescence of worms fed on BW25113 and mutants ΔdnaK and ΔclpX living bacteria (-715 
) and UV-irradiated bacteria (+) (n=5).  g,h KEGG Pathways enriched from the E. coli (g) and 716 
C. elegans (h) proteomics from the ΔdnaKΔclpX vs Δdna comparison. i, Heat map of the 717 
significant protein expression from the ΔdnaK versus ΔclpX and ΔdnaKΔclpX. j, Normalized 718 
UPS fluorescence of worms fed on E. coli mutants ΔdnaK, ΔdnaKΔtonB, ΔdnaKΔclpX, 719 
ΔdnaKΔclpXΔtonB (n=5). k, Normalized UPS fluorescence of worms fed on E. coli BW25113, 720 
ΔdnaK, ΔclpX, ΔdnaKΔclpX in the presence (+) or absence (-) of vitamin B12 (150 nM) (n=3-721 
6). l, Normalized UPS fluorescence of worms fed on BW25113, ΔdnaK and ΔdnaKΔclpX 722 
supplemented with propionate (0, 1 and 3 mM) (n=3). m, Normalized UPS fluorescence of 723 
worms fed on BW25113 and strains Δscp, ΔdnaK, ΔdnaKΔscp (n=5). n, Normalized UPS 724 
fluorescence of worms fed on BW25113 and strains ΔdnaK, ΔclpX and ΔdnaKΔclpX (n=4-6). 725 
o, Normalized UPS fluorescence of worms fed on BW25113 for wild-type C. elegans N2 (Ctrl) 726 
and worm mutants acdh-1(0), hphd-1(0), mce-1(0) in the presence (+) and absence (-) of 727 
vitamin B12 (150 nM) (n=4). p, Normalized UPS fluorescence of worms fed on BW25113 and 728 
strains ΔatoA, ΔatoB with and without acetoacetate (10mM) (n=3). q, Scheme showing that 729 
proteostasis regulation at the bacterial level regulates the host response and proteostasis 730 
status via propionate and vitamin B12. Stats correspond to comparison against the control 731 
(one-way ANOVA) and between nested conditions (two-way ANOVA), represented as *P < 732 
0.05, **P < 0.01, ***P < 0.001, NS P > 0.05. 733 

 734 

  735 
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METHODS 736 
 737 
RNA sequencing of C. elegans fed on PG E. coli strains 738 
Around 30 C. elegans animals were grown per well in 96-well microtiter plates, each well 739 
containing NGM seeded with a distinct E. coli strain. On day 1 of adulthood the worms were 740 
transferred in a high-throughput manner to clean 96 well plates using INTEGRA Viaflo 96 741 
liquid handler. Worms were washed twice with RNase-free water to remove bacterial traces 742 
and flash-frozen in liquid nitrogen. For lysis, we used bead-based mechanical disruption 743 
(Bertin Technologies) in RNA lysis buffer (Zymo Research) and on a bench top Eppendorf 744 
Thermomixer C at 2000rpm for 20 min at 4ºC. RNA was concentrated and purified with the 745 
RNA Clean & Concentrator-96 kit (Zymo Research). Samples were eluted into microtiter plates 746 
and stored at -80ºC prior to library preparation. We quantified and checked the integrity of the 747 
RNA and selected batches of 48 RNA samples with similar quality to ensure uniform RNA 748 
input. To obtain comprehensive coverage of expressed genes in the C. elegans host, we 749 
employed Lexogen QuantSeq-Pool Sample-Barcoded 3’ mRNA-Seq Library Preparation. 750 
Each RNA sample was labelled with a unique 12-nucleotide i1 sequence barcode before 751 
conversion to cDNA and pooling. Before amplification, each cDNA pool was dual-indexed with 752 
12-nucleotide i5/i7 index sequences. To validate the RNA extraction and library preparation 753 
we prepared a test-pool library from conventional E. coli laboratory strains. We performed pair-754 
ended sequencing of the test pool on an Illumina MiSeq sequencer and obtained successful 755 
demultiplexing. In total, we prepared 16 libraries that were normalized for final pool sequencing 756 
based on library quantification by Qubit 3.0 fluorometer and average library size measured by 757 
TapeStation 4200. To remove E. coli phylogroup representation biases we randomly 758 
distributed strains in the different libraries.  759 
 760 
Sequencing was performed on an Illumina MiSeq. Sequences were demultiplexed using 761 
DRAGEN GenerateFastQ (v3.7.4) by using the i5/i7 barcodes to separate the different 762 
libraries. Each library was further demultiplexed by using idemux (v.0.1.6) and by using each 763 
library and sample i1 barcode identifiers. Sequences were quality-cleaned with trimmomatic 764 
(v.0.39), removing Illumina adapters and dropping sequences below 65 nucleotides. Lexogen 765 
recommends trimming the first 12 nucleotides of each read, a step that can be avoided if the 766 
aligner used to map the reads can perform soft-clipping, which was our case with salmon 767 
(v.1.10.1). Outlier samples with extremely low read count were discarded at this point. Quality-768 
filtered reads were then filtered to exclude samples with less than 4x10^5 reads, resulting in 769 
the discard of 59 samples mainly from libraries 14 and 15. 661 samples were kept for posterior 770 
analyses (606 unique strains). Reads have been mapped to the cDNA of the C. elegans 771 
reference genome in Ensembl (version 111) with salmon (v.1.10.2), which performs soft-772 
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clipping, to build the counts matrix and then imported to R with tximport (v.1.28). were 773 
analyzed with DESeq246 (v.1.40.1) using the phylogroup as the main group and using the 774 
library information to avoid possible batch effect Genes that had less than 10 reads in total 775 
were discarded. PCA calculations were performed with the plotPCA function from DESeq2 776 
with the data transformed with the vst function. Outliers from the PCA plot from normalized 777 
counts but not batch-corrected were removed from the analysis. Batch correction was 778 
performed with the removeBatchEffect function from limma47 (v.3.64.1). Per-gene variance 779 
was modelled with the function modelGeneVar from the scran package48 (v.1.36.0).  780 
 781 
To build the transcriptional landscapes from the worm, the curated database from WormCat13 782 
containing categories at level 1 to 3 was downloaded (Nov-2021 version). The genes 783 
belonging to each category per level were summed by using the normalized and batch-784 
corrected reads from the transcriptional profile. A single value was obtained per category, level 785 
and strain, which was used for downstream analyses.  786 
 787 
E. coli strain landscape selection  788 
The E. coli strains were selected from the NCBI genome database. The metadata was 789 
downloaded on January 11th, 2024, and was downloaded with the NCBI dataset download 790 
tool (v. 16.2.0). The strains were filtered based on the criteria described here. Genomes that 791 
were not at the assembly level of “chromosome”, “complete genome” or “scaffold” were 792 
removed. The scaffold N50 was used to filter out genomes with a value lower than 150K. 793 
CheckM metrics were used to remove genomes with a completeness lower than 95% and a 794 
contamination higher than 1%. Mash distances (mash v. 1.1)49 were calculated pairwise 795 
between all genomes, and those strains whose mean distances were higher than 0.05 were 796 
removed. Finally, genomes with a sequence length greater than 7Mbp, and/or genomes with 797 
a contig count higher than 300 were removed. This resulted in 8,829 assemblies passing all 798 
filters.  517 strains were added from the EcoRef collection10, where evolution-related strains 799 
were discarded from the analysis. 212 commensal strains were added from human isolates 800 
from Australia6. Phylogroups were assigned with the EzClermont v. 0.7.0 tool50 (tool based on 801 
the approach from ClermonTyping51), and genomes belonging to class cryptic, U/cryptic and 802 
fails were discarded. The final number of genomes was 9,558 assemblies. 803 
 804 
Gene annotation and pangenome analysis 805 
Genome annotation was performed with Bakta52 (v. 1.9.3) using the full database (v. 5.1) using 806 
by default parameters. The pangenome was analyzed with Panaroo53, selecting a strict clean 807 
mode and removing invalid genes. Due to the complexity of this pangenome and the 808 
computation time, the pangenome was split into 5 parts containing approximately 2000 809 
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random genomes each. Each pangenome was calculated using the same parameters. The 810 
output from the 5 calculations was merged into the final output using the Panaroo-merge 811 
function from the main pipeline. The reference sequences from the gene families were then 812 
translated into proteins (using a custom Python script with biopython v. 1.84). Gene 813 
presence/absence matrix was used to calculate the Principal Component Analysis shown in 814 
the main text by using the PCA function from scikit-learn v. 1.5.1. The pangenome analysis 815 
from the strains used for the C. elegans transcriptome and the reporter screening was 816 
performed independently by leveraging the annotations obtained with Bakta and running the 817 
pipeline as a single process this time (592 strains in total). 818 
 819 
Gene presence/absence matrix was used to generate the accumulation curve (ACC) for the 820 
full E. coli panel of 9,558 strains, and to calculate the Heap’s law. The ACC was generated by 821 
first removing gene families that were present in more than 99% of the strains, then dividing 822 
the total gene count into 50 sampling points and randomly picking genomes for each sampling 823 
point to count the number of genes. This process was iterated over 5 times. Heap’s law was 824 
calculated to fit the following equation: 825 

𝑃 = 	𝑘 ∗ 𝑁! 826 
P is the pangenome size, N is the number of genomes, and 𝑘 and 𝛾 are the parameters to fit. 827 
Heap’s law parameters were fitted using the average of the ACC data per point with the nls 828 
function in R. 829 
 830 
Pairwise strain genetic similarity was measured as the Jaccard similarity between every pair 831 
of strains included in the study. It was calculated as the shared genetic content divided by the 832 
union of their genetic content between each strain pair.  833 
 834 
Phylogeny 835 
From the core genome extracted from Panaroo, a subset of 275 genes present in all strains 836 
was used to build the phylogenetic tree for the full E. coli panel. To avoid multicopy bias, only 837 
one gene per strain was kept for the alignment. For the laboratory strains included in the 838 
smaller panel we used the full core genome. The alignment was done using mafft54 (v. 7. 526), 839 
and the tree was constructed with IQ-Tree55 (v. 2.3.6) with the GTR+I+G substitution model. 840 
 841 
GO term prediction 842 
Sequence-based methods 843 
Proteins were classified using two of the most popular sequence-based methods used in the 844 
community: InterPro and eggNOG. Search in the InterPro databases was done using 845 
interproscan v. 5.59-91.016 with by default parameters. The search in the eggNOG database 846 
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was done using eggnog-mapper v. 2.1.1217 with MMseqs2 to look for novel families options 847 
enabled. Results from both methods were filtered to remove entries that had an E-value larger 848 
than 1e-5. 849 
 850 
Machine learning methods  851 
Reference genes from Panaroo were split into 4 smaller files to fit in memory. Proteinfer18 852 
source code was downloaded from github and function prediction was done by using 5 853 
ensemble models and a reporting threshold of 0.3. 854 
The reference genes from Panaroo were translated into proteins and sequences were 855 
clustered with CD-HIT v. 4.8.1 (similarity threshold of 0.98) to remove similar sequences from 856 
the dataset, resulting in 55,942 unique clusters. The resulting file was split into 20 smaller files 857 
to fit into memory. Proteins were embedded with bio-embeddings pipeline (v.0.2.2), by using 858 
the model ProtT5-XL-U5012 in half-precision mode. Proteins larger than 3,000 amino acids 859 
were discarded to fit in memory. Transfer learning was done using available pipelines under 860 
bio-embeddings that used goPredSim19, using Euclidean distances and a k-nearest-neighbors 861 
of 3. ProtT5 h5 file was used as a reference with GOA annotations from 2022. Proteinfer, 862 
protein embeddings and transfer learning were carried in a computer with 32Gb of RAM and 863 
an RTX 4080 GPU with 16Gb of memory.  864 
 865 
Information content calculation 866 
To calculate the information content (IC) of the GO terms predicted by the different tools, we 867 
used an adaptation of the method from Barrios-Nuñez et al15. Given that GO terms have a 868 
hierarchical structure, the deeper nodes from the branch will contain a higher functional 869 
information. Considering that having a deep node in the branch is less likely than to have a 870 
higher node with less information, we can approximate the information content of each node 871 
by the negative logarithm of the probability for that node to be inferred: 872 
 873 

𝐼𝐶 = 	 𝑙𝑜𝑔"(𝑝(𝑡)) 874 
 875 
Where p(t) is the probability for that node, which can be calculated as: 876 
 877 

𝑝(𝑡) = 1 −	
𝑐ℎ𝑖𝑙𝑑	𝑛𝑜𝑑𝑒𝑠

𝑐ℎ𝑖𝑙𝑑	𝑛𝑜𝑑𝑒𝑠 + 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟	𝑛𝑜𝑑𝑒𝑠
 878 

 879 
IC was calculated by joining all the GO term predictions together to create a joint library of 880 
terms for the pangenome. Given that we lack a pre-computed list of GO terms with their 881 
probabilities as exist for reference organisms, we had to calculate these probabilities from 882 
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scratch. We joined together all GO term predictions from the 4 methods and kept the uniquely 883 
present GO terms. This allowed us to create a database whereby to filter the resulting steps. 884 
To calculate the number of ancestors and child nodes from each term, OWLTools was used 885 
(release 2024-06-12). The database used is the go-basic.obo from geneontology.org 886 
(accessed in October 2024). From the joint set of unique GO terms we used the OWLTools-887 
Runner function to get both the ancestors and descendants from each node. As the 888 
descendants from a node, especially from the ones up in the tree, can have many different 889 
child nodes depending on the final function, we removed all the GO terms that were not 890 
present in our joint dataset. The probability was calculated as defined but corrected as 𝑝(𝑡) =891 

𝑝(𝑡)( #
$%&'()*+

) for the cases where no descendant was kept in the list, but the GO term did not 892 

reach the bottom of the branch from the obo database. 893 
 894 
Strain embeddings calculation 895 
Strain embeddings were calculated based on the gene presence/absence matrix generated 896 
by Panaroo, the protein embeddings generated by the pLM model ProtT5-XL-BFD, and the 897 
number of genes per strain. To calculate any of the different strain embeddings versions 898 
described below, we excluded the core genome set of genes, as they were not useful given 899 
that all strains shared them.  900 
 901 
Strain embeddings were generated using three distinct aggregation methods: 1) direct 902 
summation via matrix multiplication; 2) simple averaging, normalized by the gene count per 903 
strain to mitigate genome size bias; 3) weighted averaging, which employs an Inverse Gene 904 
Frequency (IGF) metric. The three versions can be visualized in Extended Data Fig. S3a, the 905 
strain embeddings have been uploaded to Zenodo (https://doi.org/10.5281/zenodo.18221759) 906 
 907 
Matrix multiplication 908 
The simplest form was calculated by multiplying the presence/absence matrix with the 909 
embedding matrix with the following form:  910 

𝑆 = 𝐴, ∙ 	𝐸 911 
Where A is the binary matrix of gene presence/absence with 𝑛𝑥𝑚 dimensions (genes and 912 

genomes), E is the matrix of protein embeddings from the representative genes with 𝑛𝑥𝑑 913 

dimensions (genes and embeddings), and S is the objective strain embeddings with 𝑚𝑥𝑑 914 
dimensions (genomes and embeddings).  915 
 916 
Average strain embeddings 917 
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The average strain embeddings were calculated based on how many genes were encoded in 918 
each genome and then applying a diagonal normalization on the matrix multiplication equation. 919 
The diagonal normalization is a 𝑚𝑥𝑚 matrix where the diagonal is the inverse of the number 920 

of genes per strain, where 𝑁- is the number of present genes in strain 𝑖: 921 
 922 

𝐷. = 𝑑𝑖𝑎𝑔 E
1
𝑁#
,
1
𝑁"
, … ,

1
𝑁/

H	 923 

 924 
Therefore, the average strain embeddings were calculated as: 925 
 926 

𝑆$0 =	𝐷.(𝐴, 	 ∙ 	𝐸) 927 
 928 
Where 𝑆$0 is the objective average strain embeddings with dimensions 𝑚𝑥𝑑. 929 
 930 
Weighted average strain embeddings 931 
Finally, the contribution for each gene to the strain potential was scaled in terms of their 932 
proportion, thus, increasing the importance of rare genes to the final position of the strain 933 
embedding. That is, genes that are common have a lower weight than the ones that are rarer. 934 
To do so, relied on an adaptation of the Inverse Document Frequency metric that can be 935 
adapted here as the Inverse Gene Frequency (IGF). 936 
First, the Strain Count for a gene family (𝐶-) was defined as the number of strains in which the 937 
gene family 𝑖 was present over the total number of strains (𝑀). This was equivalent to the sum 938 
of the i-th row of matrix A: 939 
 940 

𝐶- =	J𝐴-,2

3

24#

 941 

 942 
We next defined Weight for Gene Family 𝑖 (𝑊-) as the logarithm of the relative presence of a 943 
specific gene family, where 𝑊- = 0 if 𝐶- = 𝑀 (gene present in all strains): 944 

𝑊- = log	 E
𝑀
𝐶-
H 945 

We then defined the diagonal matrix with gene weights calculated from last equation as: 946 
 947 

𝑊 = 𝑑𝑖𝑎𝑔(𝑊#,𝑊", …𝑊%) 948 
 949 
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Here 𝑊 is a matrix of 𝑛𝑥𝑛 dimensions. We then used this matrix to calculate the weighted 950 

protein embeddings (𝐸5) as: 951 
 952 

𝐸5 = 𝑊 ∙ 𝐸 953 
 954 
Where 𝐸5 and 𝐸 are matrices with 𝑛𝑥𝑑 dimensions. Then we calculated the weighted sum of 955 

embeddings (𝑆5'-67)'8_(:/) for each strain as: 956 

 957 

𝑆5'-67)'8_(:/ =	𝐴, ∙ 𝐸5 =	𝐴,(𝑑𝑖𝑎𝑔(𝑊)𝐸) 958 

 959 
Where 𝑆5'-67)'8_(:/ is a 𝑚𝑥𝑑 matrix. We proceeded by calculating the sum of weights for 960 

each strain (𝑊(:/) as: 961 
 962 

𝑊(:/ = 𝐴, ∙ 𝑊0'& 963 
 964 
Where 𝑊0'& is an 𝑛	𝑥	1 column vector containing the 𝑊- values; and the sum of weights for 965 

each strain 𝑗 is 𝑊(:/,2 = ∑ 𝐴-,2 ∙ 𝑊-
.
-4#  966 

We created another diagonal normalization matrix (𝐷5, an 𝑚𝑥𝑚 matrix), where the diagonal 967 
elements are the inverse of the sum of weights for each strain: 968 
 969 

𝐷; = 𝑑𝑖𝑎𝑔 R
1

𝑊(:/,#
,

1
𝑊(:/,"

, … ,
1

𝑊(:/,/
S 970 

 971 
Finally, we used all these outputs to do the final calculation and got the weighted averaged 972 
strain embeddings: 973 
 974 

𝑆5.$0 = 𝐷; ∙ 𝑆5'-67)'8!"# =	𝐷;(𝐴,(𝑊 ∙ 𝐸)) 975 

 976 
Where 𝐷;is a 𝑚𝑥𝑚 matrix, 𝑆5'-67)'8_(:/ is a 𝑚𝑥𝑑 matrix, and the product 𝑆5.$0 is a 𝑚𝑥𝑑 977 

matrix whose each vector row 𝑆2 is the weighted averaged embedding for strain 𝑗. 978 

 979 
Functional mapping onto host phenotype 980 
Average strain embeddings from the 9,558 E. coli strains were used to create a Principal 981 
Component Analysis in R using the prcomp function. The PCA coordinates were then 982 
leveraged to create the pangenome-host functional mapping. The WormCat-aggregated 983 
functions at level 3 were mapped onto the PCA coordinates 1 and 2 of the laboratory E. coli 984 
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strains. The worm functions were correlated to each Principal Component per separate by 985 
using Spearman correlation and by correcting the P-value for multiple comparisons with a 986 
FDR calculated with the Benjamini-Hochberg method. 987 
 988 
High-throughput imaging and data analysis 989 
C. elegans animals were synchronized by standard hypochlorite method, and around 20 L1 990 
worms were transferred to each well of 96-well plates seeded with E. coli pangenome strains. 991 
The worms were incubated at 20°C until D1 of adulthood and immobilized for imaging with 5 992 
µL of 2% levamisole per well using INTEGRA Viaflo-96. Images were acquired by an 993 
automated protocol that captured 10 images at fixed z-heights per well under identical 994 
exposure settings using a Zeiss Axio Zoom V16 microscope system equipped with an 995 
AxioCam camera operated by Zen 2 software (Zeiss). GFP filter set (excitation: 450-490 nm; 996 
emission: 500-550 nm) or the RFP filter set (excitation: 559-585 nm; emission: 600-690 nm) 997 
was used depending on the strain being imaged. All images were exported in CZI format, and 998 
the most focused z-stack was extracted in Phyton (v. 3.12). Ilastik (v. 1.4) was used to detect 999 
worm pixels and to quantify fluorescence levels per worm/cluster of worms. 1000 
 1001 
The fluorescence data was then filtered such that only single worms (ilastik single worm 1002 
probability > 0.5) with a pixel size between 1000 and 6000 or clustered worms (ilastik clustered 1003 
worm probability > 0.5) with a pixel size greater than 6000 were retained. Worm mean 1004 
fluorescence expressed as the brightness per worm as a whole and corrected per size, was 1005 
corrected against the background for each case. The mean-fluorescence of technical 1006 
replicates was then averaged, and biological replicates were normalized. Mean-fluorescence 1007 
was normalized such that, for each worm reporter, the median of each biological replicate was 1008 
equal to the global median of all biological replicates.  Following this, for each worm-bacteria 1009 
pair the biological replicates, where n > 2 (up to n=5), were subjected to a z-score analysis 1010 
using scipy.stats.zscore module (SciPy v1.8) and biological replicates with an absolute z-1011 
score > 1.5 for mean-fluorescence were removed. Given that most data had only 2 biological 1012 
replicates and further replicates were only performed in select cases to replace replicates 1013 
where some wells reduced data quality, from these sets of biological replicates the two 1014 
replicates with the lowest deviation from each other were carried forward. Where only 1 1015 
biological replicate (8.9% of worm-bacteria pairs) was available; these were carried forward 1016 
alone. Single replicates arise due to empty wells, where reporter worms escape wells and do 1017 
not appear in the images; however, differences between single replicates and double 1018 
replicates were broadly inexistent. The log2 ratio between each biological replicate pairs' 1019 
mean-fluorescence value was then calculated, and the median log2 ratio calculated for each 1020 
reporter worm. For each reporter worm dataset, a decreasing threshold was iteratively tested 1021 
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for the maximum allowed log2 ratio between replicates and the maximum deviation from the 1022 
median log2 ratio. Here, data above the threshold was removed and the Pearson correlation 1023 
between the biological replicates calculated using scipy.stats.pearsonr module (SciPy v1.8). 1024 
The threshold was continuously decreased and worm-bacteria pairs removed until a Pearson 1025 
correlation of >= 0.7 was achieved. The final mean-fluorescence values were then calculated 1026 
from the average of the biological replicates. Values were then normalized against the median 1027 
for each reporter case for the tree representation, which was visualized with tidytree (v. 0.4.6), 1028 
treeio (v. 1.32.0) and phytools (v. 2.4-4). 1029 

Pearson correlations of median ratio profiles were calculated for all strain-strain pairs to 1030 
produce a correlation matrix using pandas.DataFrame.corr (pandas v2.1.4). A phylogenetic 1031 
distance matrix for strains was hierarchical clustered, using the UPGMA algorithm, to produce 1032 
a linkage matrix. Hierarchical clustering was performed here using the 1033 
scipy.cluster.hierarchy.linkage module (SciPy v1.13.1) and prior to clustering the distance 1034 
matrix was converted from the vector-from to the square-form using 1035 
scipy.distance.squareform (SciPy v1.13.1). The median ratio correlation matrix was then 1036 
clustered either using the phylogenetic linkage matrix or by strain-strain correlation profile 1037 
similarity and displayed as a clustered heatmap (Seaborn v0.13.2, matplotlib v3.10.3).  1038 

Pearson correlations of median ratio profiles were then calculated for all strain-strain pairs 1039 
within the same phylogroup, as above. The percentage of strains with positive or negative 1040 
correlations within each phylogroup, as well as for the pangenome, were calculated for a range 1041 
of thresholds between 0 to 1 using steps of 0.05, excluding same-strain pairs. Where 1042 
correlations were greater than the threshold, they were classed as positively correlated. Where 1043 
correlations were less than the negative of the threshold, they were classed as negatively 1044 
correlated. Clustered heatmaps were produced for each phylogroup correlation matrix, 1045 
hierarchically clustering by strain-strain correlation profile similarity (Seaborn v0.13.2, 1046 
matplotlib v3.10.3). Chord plots were calculated as the pairwise Pearson correlation and P-1047 
values corrected by Benjamini-Hochberg. The significance threshold was set at an alpha of 1048 
0.05, and results were represented as the symmetrical relation of the significant correlations 1049 
existent per phylogroup with the library circlize (v. 0.4.16) 1050 

 1051 
Proteostasis strains and culture conditions 1052 
E. coli BW25113 single gene deletion mutants were obtained from the KEIO collection and 1053 
confirmed by PCR. The reaction was performed with GoTaq mix and the PCR was carried out 1054 
in a PCRmax Alpha Cycler 2 as follows: 2min at 98°C for the initial activation of enzymes, 30 1055 
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cycles of 30s at 98°C, 30s at 58°C and 1 min/Kb at 72°C. Each strain was grown in LB broth 1056 
overnight and 120 μL were plated on nematode growth medium (NGM) plates and kept at 1057 
20°C for 2 days.  1058 
The C. elegans UBV reporter, PP607 (hhIs64[unc-119(+); sur-5::UbV-GFP]; hhIs73[unc-1059 
119(+); sur-5::mCherry]) was provided by Hoppe Lab, Germany. This strain allows to quantify 1060 
the proteasomal activity in vivo thanks to the GFP fused to a non-cleavable ubiquitin (UbV-1061 
GFP) under the control of the ubiquitous sur-5 promoter20,23,25. The following strains were 1062 

made for fluorescence studies: FGC72 nIs470[Pcysl-2::GFP];wbmIs67 [eft-1063 

3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC73 agIs17 [myo-2p::mCherry + irg-1064 

1p::GFP] IV;wbmIs67 [eft 3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC74 1065 

[rtIs30(pfat-7::GFP);wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC76 1066 

wwIs25[Pacdh-2::GFP + unc-119(+)];wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR 1067 

*wbmIs65]; FGC77 dvIs19 [(pAF15)gst-4p::GFP::NLS] III;wbmIs67 [eft-1068 

3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC78 agIs219 [T24B8.5p::GFP::unc-54 3' 1069 

UTR + ttx-3p::GFP::unc-54 3' UTR] III;wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR 1070 

*wbmIs65]; FGC79 wwIs24 [Pacdh-1::GFP + unc-119(+)];wbmIs67 [eft-1071 

3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC80 zcIs13[hsp-6::GFP];wbmIs67 [eft-1072 

3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC81 dvIs70 [hsp-16.2p::GFP + rol-1073 

6(su1006);wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC82 mgIs73 1074 

[cyp-14A4p::gfp::cyp-14A4 3’UTR + myo-2p::mCherry] V.;wbmIs67 [eft-1075 

3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC83 muIs84 [(pAD76) sod-3p::GFP + 1076 

rol-6];wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC84 wuIs177 [Pftn-1077 

1::gfp lin-15(+)];wbmIs67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIs65]; FGC89 1078 

acdh-1(ok1489), hhIs72[unc-119(+); sur-5::mCherry], hhIs64 [unc-119(+); sur-5::UbiV-GFP]III; 1079 

FGC120 hphd-1(ok3580); hhIs72[unc-119(+); sur-5::mCherry], hhIs64 [unc-119(+); sur-5::UbiV-1080 

GFP]III; FGC121 mce-1(ok243) I; hhIs72[unc-119(+); sur-5::mCherry], hhIs64 [unc-119(+); sur-1081 

5::UbiV-GFP]III. Worms were maintained at 20°C, on nematode growth medium NGM seeded 1082 

with different bacterial strains. We supplemented NGM with homocysteine (final concentration 1083 
1 and 5 mmol/L), propionate (final concentration 1 and 3 mmol/L) and cobalamin (vitamin B12, 1084 
final concentration 150 nmol/L) solubilized in water and filter sterilized. 1085 
 1086 
Double deletion bacterial strain construction 1087 
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Double gene deletion has been generated by using strains from the KEIO Library56. This library 1088 
is based on the Escherichia coli strain BW25113. The Kanamycin cassette has been removed 1089 
by using the plasmid pCP20. This plasmid encodes the yeast Flp recombinase gene, 1090 
chloramphenicol and ampicillin resistant genes, and temperature sensitive replication57. E. coli 1091 
BW25113 strains containing a single mutation were transformed following the TSS enhanced 1092 
chemical transformation58 and were plated on chloramphenicol 30ug/ml incubated at 30°C 1093 
overnight. Clones were selected and streaked on LB with no selection and LB-Kanamycin (50 1094 
μg/mL) plates, incubated at 30°C overnight. Kanamycin sensitive clones were streaked on LB 1095 
agar plates and incubated at 37°C overnight to stop the replication of the pCP20. Clones were 1096 
then streaked on LB, LB-Kanamycin and LB-chloramphenicol and incubated at 37°C 1097 
overnight. Sensitive clones to chloramphenicol and kanamycin were selected and kanamycin 1098 
cassette removal was confirmed by PCR. From this, we obtained mutant with a single mutation 1099 
not carrying a kanamycin cassette. The secondary mutations were then extracted from 1100 
another mutant of the Keio library. The strain of interest was lysed by using P1 phage and 1101 
transduced in E. coli kanamycin sensitive strain according to the protocol from Thomason et 1102 
al. 200759,60 and was then selected for his resistance to kanamycin. Finally, the presence of 1103 
both mutations was confirmed by PCR.  1104 
 1105 
Bacterial growth assay 1106 
The optical density (OD) at 595nm was monitored using NuncTM 96-well polystyrene round 1107 
bottom microwell plates containing LB overnight at 37°C (previously grown overnight in LB 1108 
and diluted 1,000-fold). Plates were placed in the BioTeK BioSpa 8 automated incubator 1109 
(Agilent), and OD595 was measured every 30 minutes by the BioTek Citation 3 plate reader 1110 
(Agilent) for 24h. Growth curves were extracted and area under the curve (AUC) calculated 1111 
by using an in-house Python code (https://github.com/Cabreiro-Lab/cell_dynamics).  Growth 1112 
curves and stats were performed in Prism 8 (v8.4.0) and in RStudio.  1113 

 1114 

Bacterial overexpression mutant generation 1115 
We used strains from the ASKA library, based on the E. coli K-12 strain60. The expression of 1116 
the ORF of interest is under the control of an IPTG-inducible promoter (isopropyl β-D-1-1117 
thiogalactopyranoside) on the plasmid pCA24N carrying chloramphenicol resistance. Clones 1118 
overexpressing btuB and tonB were grown in LB broth supplemented with 30 µg/mL of 1119 
chloramphenicol at 37°C shaking at 200 rpm, plasmids were then extracted with the kit 1120 
Miniprep GenElute (Simga Aldrich PLN350) and resuspend in water. Plasmids were 1121 
transformed into strains of interest using the TSS enhanced protocol58. Once the 1122 
transformation was confirmed by PCR, we grown these strains in LB broth supplemented with 1123 
1 mmol/L of IPTG at 37°C shaking at 200 rpm for 16 hours. 1124 
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 1125 
UV-irradiation of bacteria 1126 
Bacteria strains were irradiated with UV to inactivate them61. To prepare UV-irradiated E. coli, 1127 
an overnight culture was grown in LB broth at 37°C with shaking at 200 rpm for 16 hours. A 1128 
CL-1000 UV crosslinker equipped with UV-B lamps was sterilized by wiping with 70% ethanol 1129 
and irradiating the chamber for 5 minutes alternatively. The overnight culture was diluted in 1130 
fresh sterile LB at a 1:3 ratio and placed in petri dishes. Plates were placed inside the UV 1131 
chamber without lids and irradiated for a total of 60 minutes, swirling every 10 minutes to 1132 
ensure uniform exposure. To prevent heat shock-induced bacterial death, the chamber was 1133 
allowed to cool for 5 minutes between intervals. Following UV treatment, bacteria were 1134 
collected into a new sterile 50 mL Falcon tube, centrifuged at 4000 rpm for 10 minutes at 4°C, 1135 
and the supernatant was carefully removed. The bacterial pellet was resuspended in LB and 1136 
placed on NGM plates for worms. 1137 
 1138 
Protein identification and quantification by LC-MS/MS 1139 
Bacterial samples preparation 1140 
 1141 

E. coli BW25113, wild type, Dlon::kan, DhtpG::kan, DdnaK::kan, DclpX::kan, DcbpM::kan, 1142 

DdnaKDclpX::kan were grown in LB broth overnight at 37°C shaking 200 rpm. NGM plates 1143 

were seeded with 120 µL of overnight bacterial cultures and lawns were left to grow at 25°C 1144 

for 2 days. 5 biological replicates were included per condition. Bacteria were collected from 1145 
plates with PBS 1X buffer using a sterile glass scraper in Diagenode tubes. Samples were 1146 
centrifuged at 14000 rpm for 90s at room temperature. The supernatant was removed, and 1147 
pellets were resuspended with lysis Buffer (8 mol/L urea, 20 mmol/L hepes pH 8). Samples 1148 
were flash frozen in liquid nitrogen and kept on ice from this point onward. Pellets were then 1149 
lysed via sonication for 5 minutes at 100% amplitude by using the sonicator waterbath 1150 
QSonica Q700.  Samples were centrifuged at 20000g for 15 minutes at 4°C to separate the 1151 
cellular debris and proteins. Supernatants containing the extracted protein were transferred to 1152 
clean tubes and protein concentrations were determined by the Quick start Bradford protein 1153 
assay (Biorad) at 565 nm. The BSA was used for standard curves. We proceeded to two 1154 

proteomic analyses, the first one with E. coli BW25113, wild type, Dlon::kan, DhtpG::kan, 1155 

DdnaK::kan, DclpX::kan, DcbpM::kan. The second one has been proceeded with E. coli 1156 

BW25113 wild type, DdnaK::kan, DclpX::kan, and DdnaKDclpX::kan. 1157 

 1158 
Worm samples preparation 1159 
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N2 worms were cultivated on NGM plates seeded with E. coli BW25113 wild type for 5 days. 1160 
Eggs were harvested and L1 were seeded on NGM seeded with bacterial strains of interest 1161 
that have been incubated 2 days at 25°C. 5 biological replicates were included per condition. 1162 
After 4 days, worms were harvested and washed 5 times with PBS 1X buffer and transferred 1163 
in Diagenode tubes. Worms were then resuspended in the lysis buffer (8 mol/L urea, 20 1164 
mmol/L hepes pH 8.0). Samples were flash frozen with liquid nitrogen then sonicated 2 times 1165 
5 minutes at 100% amplitude by using the sonicator waterbath QSonica Q700. Samples were 1166 
centrifuged 20 min 20000 rpm 4°C. Supernatants containing the extracted protein were 1167 
transferred to clean tubes and protein concentrations were determined by the Quick start 1168 
Bradford protein assay (Biorad) at 565 nm. BSA was used for standard curves. 1169 
 1170 
Sample preparation for bacterial proteomics 1171 
Protein samples (100 µg per sample) were processed using an in-solution digestion 1172 
procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and 1173 
in the dark, to final concentrations of 10 mmol/L dithiothreitol (DTT) and 50 mmol/L 2-1174 
chloroacetamide (2-CAM), respectively. Samples were diluted two-fold for the first analysis 1175 
with 20 mmol/L HEPES (pH 8.0), reducing the urea concentration to 4 mol/L, and diluted 8-1176 
fold for the second analysis, reducing the urea concentration to 1 mol/L. This was followed by 1177 
the addition of 2 µg of trypsin (Promega, V528A) and incubation overnight for the first analysis. 1178 
For the second analysis, an initial LysC (Wako, 121-05063) digestion at a 1: 500 proteases to 1179 
protein ratio, for 5 hours at 37°C. Samples were then further diluted to a final urea 1180 
concentration of 2 mol/L with 20 mmol/L HEPES (pH 8.0), followed by the addition of trypsin 1181 
(Serva, 37286.03) at 1:50 protease to protein ratio. Samples were incubated at 37°C for 16 1182 
hours. The digestion of the first analysis was stopped by acidification with a final concentration 1183 
of 1% trifluoroacetic acid (TFA) against 0,2% for the second one and protein digests were 1184 
desalted using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted 1185 
with 60% acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation. 1186 
 1187 

Sample preparation for worm proteomics 1188 
Protein samples (100µg/sample in 8M urea) were processed using an in-solution digestion 1189 
procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and 1190 
in the dark, to final concentrations of 10mM dithiothreitol (DTT) and 50mM 2-chloroacetamide 1191 
(2-CAM), respectively. Samples were diluted 8-fold with 20mM HEPES (pH 8.0), reducing the 1192 
urea concentration to 1.5M. This was followed by addition of 2µg of trypsin (Promega, V528A). 1193 
Samples were incubated over-night at 37oC. The digestion was stopped by acidification with 1194 
10% trifluoroacetic acid (TFA) to a final concentration of 1% and protein digests were desalted 1195 
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using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted with 60% 1196 
acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation. 1197 

 1198 
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis 1199 
Dried tryptic digests were re-dissolved in 0.1% TFA and each sample injected at 2μg LC-1200 
MS/MS analysis was performed using an Ultimate 3000 RSLC nano liquid chromatography 1201 
system (Thermo Scientific) coupled to a coupled to a Q-Exactive mass spectrometer (Thermo 1202 
Scientific) via an EASY spray source (Thermo Scientific). For LC-MS/MS analysis re-dissolved 1203 
protein digests were injected and loaded onto a trap column (Acclaim PepMap 100 C18, 100 1204 
μm × 2cm) for desalting and concentration at 8 μL/min in 2% acetonitrile, 0.1% TFA.  Peptides 1205 
were separated on-line to an analytical column (Acclaim Pepmap RSLC C18, 75 μm × 75 cm 1206 
for the bacterial samples, and C18, 75 μm × 50 cm for the worm samples) at a flow rate of 200 1207 
nL/min and 250 nL/min for the bacteria and worm samples respectively). For bacteria samples, 1208 
peptides were separated using a 120 minutes gradient, 4-25% of buffer B for 90 minutes 1209 
followed by 25-45% buffer B for another 30 minutes (composition of buffer B – 80% 1210 
acetonitrile, 0.1% FA). For worm samples, peptides were separated using a 90 minutes 1211 
gradient, 1-22% of buffer B for 60 minutes followed by 22-44% buffer B for another 30 minutes 1212 
(composition of buffer B – 75% acetonitrile, 5% DMSO and 0.1% FA). Eluted peptides were 1213 
analyzed by the mass spectrometer operating in positive polarity using a data-dependent 1214 
acquisition mode. Ions for fragmentation were determined from an initial MS1 survey scan at 1215 
70000 resolution for bacterial samples and 120000 for worm samples, followed by HCD 1216 
(Higher Energy Collision Induced Dissociation) of the top 12 most abundant ions for bacteria 1217 
samples and 30 most abundant ions for worm samples at 17500 resolution. MS1 and MS2 1218 
scan AGC targets were set to 3e6 and 5e4 for maximum injection times of 50ms and 50ms 1219 
respectively. A survey scan m/z range of 375 – 1800 was used, normalized collision energy 1220 
set to 27%, charge exclusion enabled with unassigned and +1 charge states rejected and a 1221 
minimal AGC target of 1e3. Dynamic exclusion was set to 45-50 seconds. 1222 
 1223 
Data analysis for proteomics 1224 
Raw proteomic files were analyzed by using the Perseus software (version 1.6.2.3 for the 1225 
bacterial samples analysis and version 1.6.10.43 for the worm samples) which is part of 1226 
MaxQuant to obtain statistical and bioinformatic analysis, as well as for visualization (the 1227 
perseus computational platform for comprehensive analysis of proteomics data). LFQ 1228 
intensities were located as columns. The data matrix was filtered based on categorical 1229 
columns to remove reverse decoy hits, potential contaminants and protein groups which were 1230 
‘only identified by site’. Gene annotations were done by using E. coli K12 (version 20200915) 1231 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2026. ; https://doi.org/10.64898/2026.01.15.699719doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/


or C. elegans (version 20210628) GOBP, GOMF, GOCC, and KEGG database. Data were 1232 
log2 transformed. The 5 biological replicates for each mutant were then pooled, compared to 1233 
each other and visualized as Volcano plots. Volcano plots were generated based on LFQ 1234 
intensities with the following settings: T-test; side: both; number of randomizations: 250; 1235 
preserve grouping in randomizations: <none>; FDR: 0.05; S0: 0.1. Then, significant 1236 
differences between mutants were exported for a Hierarchical clustering analysis (HCA). This 1237 
was carried out after filtering rows based on a minimum of two valid values in at least one 1238 
group, Z-scoring of values in rows. The HCA was generated with the following settings for both 1239 
rows tree and columns tree: distance: Euclidean; linkage: average; constraint: none; 1240 
preprocess with k-means selected (number of clusters: 300; maximal number of iterations: 10; 1241 
number of restarts: 1). Further data representation and plotting was carried out in R 1242 
programming language.  1243 
 1244 
Given that both ΔclpX and ΔdnaKΔclpX behave in a similar way opposed to the ΔdnaK 1245 
deficient strain, we subtracted the differences between groups to study the proteins that were 1246 
unique to each cluster. We were specifically interested in the set of proteins that were 1247 
downregulated in ΔdnaK opposed to the upregulated in ΔdnaKΔclpX, we used the double 1248 
mutant as a control and subtracted the proteins found in ΔdnaK. Therefore, the effects shown 1249 
in the distinct proteins between both groups can be described as the unique signature of the 1250 
differential proteostasis capabilities of both groups. In a similar way, the set of proteins 1251 
expressed in ΔdnaK but not in the other groups was studied using the same logic. Thus, the 1252 
set of proteins that conferred protein stability was also captured here. Groups were extracted 1253 
from the significant proteins using R programming language and the UpSet library v. 1.4.0.  1254 
 1255 
Western blot 1256 

Worms were grown on plates seeded with E. coli BW25113, Dlon::kan, DhtpG::kan, 1257 

DdnaK::kan, DclpX::kan, DcbpM::kan, DhscA::kan, DdnaJ::kan, DhybE::kan from the L1 to 1258 

day1 adult stage at 20°C. 75 worms were collected in 100 µL 1X SDS loading buffer. Then 1259 

samples were boiled 5 minutes at 95°C at 1400 rpm, sonicated for 5 minutes at 100% of 1260 
amplitude by using the sonicator waterbath QSonica Q700, and boiled again for 5 minutes at 1261 
95°C at 1400 rpm. Samples were then centrifuged for 5 minutes at 14000 rpm. For the western 1262 
blot, proteins from the lysate worms were separated by size using an Invitrogen precast SDS-1263 
Page gel 4-12%. Separated proteins were transferred on a nitrocellulose membrane by a dry 1264 
blotting system (iBlot 2 dry blotting system) with a setting according to manufacturer’s 1265 
instructions. For the detection of GFP, mCherry and Tubulin, the membranes were probed 1266 
with primary Mouse monoclonal antibodies anti-GFP at a 1:5000 dilution (clone JL-8), anti-1267 
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mCherry at a 1:2000 dilution (clone 1C51), anti-alpha tubulin at a 1:10000 dilution (clone B-5-1268 
1-2) respectively. Then membranes were exposed to the secondary antibody, Li-Cor anti-1269 
Mouse 800CW/680 from Donkey at a 10000 dilution. 1270 
The intensity of each GFP band was normalized by the intensity of its corresponding mCherry 1271 
and Tubulin bands. 3-4 biological replicates were included per condition. Statistical analysis 1272 
was done by using a one-way ANOVA with multiple comparisons (Tukey’s multiple 1273 
comparison test) with the software PRISM8 (version 8.4.0). 1274 
 1275 
Nematode fluorescence microscopy 1276 
PP607 worms (UBV worms) were cultivated on NGM plates seeded with E. coli BW25113 wild 1277 
type for 5 days. Eggs were harvested and L1 were seeded on NGM previously seeded with 1278 
bacterial strains of interest incubated 2 days at 25°C. After 4 days at 20°C, a minimum of 11 1279 
worms were anesthetized with 2% levamisole on NGM plates and were imaged under a 40x 1280 
objective using a Zeiss Axio Zoom V16 microscope system equipped with an AxioCam MRm 1281 
camera operated by Zen 2 software (Zeiss). Either the GFP filterset (excitation: 450-490 nm; 1282 
emission: 500-550 nm) or the mCherry filterset (excitation: 559-585 nm; emission: 600-690 1283 
nm) was used. All images were exported in CZI format and fluorescence levels were quantified 1284 
using Volocity 5.2 software (PerkinElmer) run on a Surface tablet (Microsoft). 1285 
The fluorescence intensity of worms was calculated as the pixel density of the entire cross-1286 
sectional area occupied by worms from which the pixel density of the background had been 1287 
subtracted. 3 independent replicates were carried out with a minimum of 11 worms imaged 1288 
per condition per replicate. The fluorescence intensity was calculated automatically by setting 1289 
a minimum threshold intensity that excluded the background. 1290 
3-6 biological replicates were included per condition. Statistical analysis was done by using a 1291 
one-way ANOVA with multiple comparisons (Tukey’s multiple comparison test) with the 1292 
software GraphPad PRISM8 (version 8.4.0). 1293 
  1294 
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DATA AVAILABILITY 1295 

 1296 

The raw sequences for the transcription profiles of the mono-association experiments with C. 1297 

elegans and the E. coli pangenome reported in this study can be accessed in GSE315953. 1298 
The raw proteomics profiles reported in the experimental validation can be accessed in PRIDE 1299 
under the IDs PXD071769, PXD071818 and PXD071867.  1300 
  1301 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2026. ; https://doi.org/10.64898/2026.01.15.699719doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACKNOWLEDGEMENTS 1302 
 1303 
F.C. was supported by the Wellcome Trust/Royal Society (102532/Z/12/Z and 1304 

102531/Z/13/A), the DFG German Research Foundation (EXC 2030 -390661388) and 1305 

(IPFP-B02 Filipe Cabreiro) of the Center for Molecular Medicine Cologne. T.H is 1306 

supported by Research Unit FOR5762 (project HO 2541/18-1 to T.H.) and (ERC, 1307 

Cellular PQCD, 101141579). D.M.M was supported by the Leverhulme Trust (RPG-1308 

2022-299). We acknowledge computational resources and support provided by the 1309 

Imperial College Research Computing Service (http://doi.org/10.14469/hpc/2232). We 1310 

would like to thank Saul Moore for helping with developing a method to select focused 1311 

microscope images, Jennifer Van der Laan and Evgeny Galimov for technical support. 1312 

We would like to express our gratitude to our colleagues and to Dr. Mária Džunková 1313 

which helped to shape this manuscript.  1314 

 1315 

  1316 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2026. ; https://doi.org/10.64898/2026.01.15.699719doi: bioRxiv preprint 

http://doi.org/10.14469/hpc/2232
https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/


AUTHOR CONTRIBUTIONS 1317 

 1318 

D.M.M., F.C. conceptualized the research. D.M.M. performed the computational 1319 

analysis of the pangenome. D.M.M, A.A., C.B., H.M.D., J.W. and F.C. analyzed the 1320 

data.  A.A. performed the reporter validation and transcriptome studies. C.B., A.Z., 1321 

F.O., J.W. and F.C performed the experiments for the worm proteostasis. A.I. and L.G. 1322 

sequenced transcriptomes and genomes. I.K., G.R, A.M. and H.K. performed 1323 

proteomics identification and analysis. D.M.M., and F.C. wrote the manuscript. D.M.M., 1324 

C.B., A.A. and F.C. participated in editing the manuscript. D.M.M., T.H. and F.C. 1325 

participated in the interpretation of the main findings. D.M.M and F.C. supervised the 1326 

research. All authors read and approved the final manuscript.   1327 

  1328 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2026. ; https://doi.org/10.64898/2026.01.15.699719doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/


COMPETING INTERESTS 1329 

 1330 

The authors declare no competing interests.  1331 

  1332 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2026. ; https://doi.org/10.64898/2026.01.15.699719doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/


EXTENDED DATA FIGURES 1333 

Extended Data Figure 1 1334 
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Extended Data Figure 2 1336 
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Extended Data Figure 3 1338 
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Extended Data Figure 4 1340 
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Extended Data Figure 5 1342 
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Extended Data Figure 6 1344 
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Extended Data Figure 7 1346 
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Extended Data Figure 8 1348 
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Extended Data Figure 9 1350 
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Extended Data Figure 10 1352 
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EXTENDED DATA FIGURE/TABLE LEGENDS 1354 

 1355 

Fig. S1 Strain composition and RNA-seq quality control. a, Number of E. coli strains in 1356 
the panel classified as human commensal, human pathogenic, animal commensal, laboratory 1357 
strains or of unknown origin. b, Read-count distribution per library for the high-throughput 1358 
RNA-seq experiment, generated on a NextSeq 2000 P3 run (1.2 × 10⁹ total reads). c, PCA of 1359 
C. elegans transcriptomes after outlier removal, showing batch-driven separation with 1360 
samples from libraries 1, 14 and 15 forming distinct clusters. d, PCA of the same dataset after 1361 
batch correction, showing no library-driven separation. e, Violin plot of the number of genes 1362 
detected per worm with at least 5 normalized counts. Each dot represents a worm sample; 1363 
data is represented by sequencing library. f, Heat map of pairwise Euclidean distances based 1364 
on DESeq2-normalized C. elegans gene expression, with hierarchical clustering of libraries 1365 
with dark blue-to-light blue showing close-to-distant relationships between samples. PCA data 1366 
and Euclidean distances are showing the VST normalized data from the transcriptional 1367 
profiles.  1368 

 1369 

Fig. S2 Functional annotation performance and embedding structure of the E. coli 1370 
pangenome. a, Phylogroup frequency Pearson correlation between the laboratory E. coli 1371 
trains and an NCBI E. coli collection (R = 0.82, P = 0.014). b, Pangenome accumulation curve 1372 
for the 9,558 E. coli genomes. The x-axis shows the number of genomes progressively added 1373 
to the analysis, and the y-axis shows the cumulative number of unique genes observed with 1374 
increasing pangenome size. c, Distribution of the pairwise Jaccard similarity between E. coli 1375 
strains from NCBI and the Cabreiro lab collection. Median values per collection are 1376 
represented. d, Violin plots representing the fraction of genes annotated by different functional 1377 
annotation tools: Interproscan, eggNOG-mapper, Proteinfer and GOPredSim. e, Pearson 1378 
correlation of annotated (left) and unannotated (right) fraction per genome and per method 1379 
(n=92,435). f, UpSet diagram of the number of genes with a GO term annotation by each one 1380 
of the functional annotation methods. Dots in the lower part describe which tool or tools are 1381 
being considered in each case. Genome partition is represented as a color in the bar-plot. g, 1382 
Maximum information content for the GO terms annotated by each method per genome 1383 
partition (n=1,347-60,152). h, PCA projection of the protein embeddings from the linear 1384 
reference from the E. coli pangenome. Colors represent the genome fractions of core, shell 1385 
and cloud (n=92,244). i, Principal component values of gene embeddings stratified by COG 1386 
functional category and pangenome class (n=2-9,802). j, Distribution of genes across COG 1387 
categories, partitioned into core, shell and cloud components. Bars show, for each COG 1388 
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category, the number of genes assigned to the core, shell and cloud genome. k, PCA 1389 
projections of protein embeddings split per genes classified in the different COG categories. 1390 
l, PCA projections of the strain embeddings colored by the main E. coli phylogroups (n=9,558). 1391 
Data shown in g, i, h and l were tested with two-tail pairwise T-test and significance is 1392 
expressed as *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05. 1393 

 1394 

Figure S3. Construction and structure of E. coli strain embeddings. a, PCA of strain 1395 
embeddings for the 9,558 E. coli strains, built using three aggregation strategies: (left) addition 1396 
of gene embeddings, (middle) average of gene embeddings and (right) weighted average of 1397 
gene embeddings (see Methods for a detailed description). Points are colored by phylogroup. 1398 
b, Violin plots showing the distributions of PC1 (left) and PC2 (right) coordinates of strain 1399 
embeddings, calculated as the average of gene embeddings, across phylogroups. c, UMAP 1400 
projection of strain embeddings for all 9,558 E. coli strains, revealing distinct clusters colored 1401 
by phylogroup. d, Bubble plot of the significant Spearman correlation coefficients (ρ) between 1402 
PC2 of the E. coli strain embeddings and WormCat functional scores across all significant 1403 
worm functional categories. 1404 

 1405 

Figure S4. Associations between strain embeddings, WormCat functional responses 1406 
and gene reporter phenotypes. a, Scheme showing the high-throughput experimental 1407 
design to analyze the C. elegans gene reporters. b, Pearson correlation representation of two 1408 
biological replicates per gene reporter in C. elegans (n=589).  c, Phylogenetic tree of the E. 1409 
coli strain panel annotated with ecological niche and C. elegans fluorescent reporter 1410 
responses. The innermost layer indicates the origin of each strain (human commensal, human 1411 
pathogenic, animal commensal, laboratory strain or unknown). Outer layers show median 1412 
normalized fluorescence ratios for each C. elegans gene reporter, mapped onto the 1413 
corresponding E. coli strain tips. d, Pairwise Pearson correlation coefficients between E. coli 1414 
strains separated by phylogroup (n=589). e, Heat map representing the percentage of positive 1415 
and negative correlations within E. coli phylogroups given a range of correlation thresholds (x-1416 
axis) (n=589). f, Chord plots representing the within and between strain correlations between 1417 
the main E. coli phylogroups for the positive (left) and positive (right) correlations (n=8-13).  1418 

 1419 

Figure S5. Proteostasis at the host level is regulated by bacterial chaperones. a, Left, 1420 
normalized brightness of the worm reporters UBV::GFP over mCherry for worms fed on 1421 
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several bacterial species, where color represents each bacterial phylum. Right, representative 1422 
fluorescence images from the worm fed on each bacterial species, measuring UBV::GFP and 1423 
mCherry worm reporters. Correspondence between the two parts is done by a numeric code. 1424 
(n=2-8) b-c, Western blot analysis of Tubulin-UBV::GFP (b) and mCherry (c) expression in E. 1425 
coli chaperone and protease mutants. Each replicate (1-4) shows protein expression in various 1426 
E. coli mutants: 1- BW25113 (control), 2- ΔdnaK, 3- ΔdnaJ, 4- Δlon, 5- ΔclpX, 6- ΔhtpG, 7- 1427 
ΔhscA, 8- ΔbepA, and 9- ΔcbpM. Tubulin serves as a loading control. d, Ratio of the 1428 
quantification of UBV::GFP over mCherry expression (n=4) (*P < 0.05, **P < 0.01, ***P < 1429 
0.001, NS P > 0.05, one-way ANOVA).  1430 

Figure S6. Bacterial chaperones and proteases drive proteostasis regulation in the 1431 
host. a, Principal Component Analysis of the protein expression profile from E. coli BW25113 1432 
control and ΔdnaK, ΔclpX, Δlon, ΔhtpG and ΔcbpM mutants. b, Network representation from 1433 
differentially expressed proteins from ΔdnaK, ΔclpX, Δlon, ΔhtpG and ΔcbpM mutants, 1434 
protein-protein interactions extracted from STRING database. Colours represent high (blue) 1435 
and low (red) expression compared to the control strain BW25113. c, Normalised brightness 1436 
of the worm reporters UBV::GFP over mCherry for worms fed on several bacterial chaperone 1437 
and protease mutants. Stats are represented as coloured stars, black for the double Δdnak 1438 
mutant vs ΔdnaK single mutant, blue for the comparison against the control strain BW25113, 1439 
and red for the comparison against ΔdnaK mutant. (n=3-6, *P < 0.05, **P < 0.01, ***P < 0.001, 1440 
NS P > 0.05, One-way ANOVA). d, Representative fluorescence images from the worm fed 1441 
on each bacterial mutant tested in a and c. e, Representative fluorescence images from the 1442 
worm fed on BW25113 (Control) and ΔdnaK and ΔclpX mutants living cells (top) and UV-1443 
irradiated cells (bottom). Fluorescence was measured for the UBV::GFP and mCherry worm 1444 
reporters. 1445 

Figure S7 Growth curves and enrichment of transcriptional responses in E. coli 1446 
chaperone mutants. a, Growth curves showing optical density at 595 nm plotted over time 1447 
(hours) of wild-type BW25113 (control), ΔclpX, ΔdnaK and ΔdnaKΔclpX double-mutant E. coli 1448 
strains. b, PCA of the protein expression of E. coli strains BW25113 control and ΔclpX, ΔdnaK 1449 
and ΔdnaKΔclpX mutant strains. c-d, STRING-based KEGG pathway enrichment for genes 1450 
differentially expressed in the E. coli ΔclpX mutant versus control, highlighting significantly 1451 
upregulated (c) and downregulated (d) enriched pathways. Colour represents the FDR values 1452 
and circle size the number of genes per category.  e-f, STRING-based KEGG pathway 1453 
enrichment for genes differentially expressed in the ΔdnaK mutant versus control, highlighting 1454 
significantly upregulated (e) and downregulated (f) enriched pathways. Colour represents the 1455 
FDR values and circle size the number of genes per category. g, STRING-based KEGG 1456 
pathway enrichment for genes differentially expressed in the ΔdnaKΔclpX double mutant 1457 
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compared with the ΔdnaK single mutant, highlighting significantly upregulated enriched 1458 
pathways. 1459 

 1460 

Figure S8. Worm proteomics show an increase in metabolic pathways. a, Principal 1461 
Component Analysis of the protein profiles of C. elegans fed on E. coli BW25113 (Control) and 1462 
mutants ΔdnaK, ΔclpX and ΔdnaKΔclpX. b-c, STRING-based KEGG pathway enrichment for 1463 
genes differentially expressed in C. elegans fed with E. coli ΔdnaK mutant versus control, 1464 
highlighting significantly upregulated (b) and downregulated (c) enriched pathways. Colour 1465 
represents the FDR values and circle size the number of genes per category.  d-e, STRING-1466 
based KEGG pathway enrichment for genes differentially expressed in C. elegans fed with E. 1467 
coli ΔdnaK mutant versus control, highlighting significantly upregulated (d) and downregulated 1468 
(e) enriched pathways. Colour represents the FDR values and circle size the number of genes 1469 
per category. f, STRING-based KEGG pathway enrichment for genes differentially expressed 1470 
in C. elegans fed with E. coli ΔdnaK versus ΔdnaKΔclpX. Colour represents the FDR values 1471 
and circle size the number of genes per category. 1472 

 1473 

Figure S9. Propionate and Vitamin B12 impact bacterial proteostasis. a, Representative 1474 
fluorescence images of the UBV::GFP and mCherry reporters from the worm fed on E. coli 1475 
chaperone mutants ΔdnaK, ΔtonB, ΔdnaKΔclpX and ΔdnaKΔclpXΔtonB. b, Fluorescence 1476 
quantification of the reporters UBV::GFP and mCherry ratio in worms when fed on E. coli KO 1477 
mutant strains (n=3-5). c, Fluorescence quantification of the reporters UBV::GFP and mCherry 1478 
ratio in worms when fed on control E. coli BW25113 and mutants ΔdnaK, ΔdnaKΔclpX. 1479 
Bacterial strains were supplemented with an over-expression (OE) plasmid in all conditions to 1480 
test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05, Two-1481 
way ANOVA). d, Fluorescence quantification of the reporters UBV::GFP and mCherry ratio in 1482 
worms when fed on control E. coli BW25113 and mutants ΔdnaK, ΔdnaKΔclpX, ΔdnaKΔclpX 1483 
ΔtonB. Bacterial strains were supplemented with an over-expression (OE) plasmid in all 1484 
conditions to test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P 1485 
> 0.05, Two-way ANOVA). e-f, Representative fluorescence images of the UBV::GFP and 1486 
mCherry reporters from the worm fed on control E. coli BW25113 and mutants ΔdnaK, ΔclpX, 1487 
ΔdnaKΔclpX in control conditions and when supplemented with 150nM of vitamin B12 (e) and 1488 
1-3mM of propionate (f). g, Growth curves showing optical density at 595 nm plotted over time 1489 
(hours) of wild-type BW25113 (control), ΔdnaK, Δscp, ΔdnaKΔscp double-mutant. E. coli 1490 
OP50 and the OP50 mutant Δscp correspond to the green and yellow lines. h, Representative 1491 
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fluorescence images of the UBV::GFP and mCherry reporters from the worm fed on control E. 1492 
coli BW25113 and mutants ΔdnaK, Δscp and ΔdnaKΔscp. 1493 

 1494 

Figure S10. C. elegans B12 shunt pathway drives propionate metabolism and UPS 1495 
impairment. a, Representative fluorescence images of the UBV::GFP and mCherry reporters 1496 
from C. elegans N2 strain (control) and worm mutants acdh-1(0), mce-1(0) and hphd-1(0) fed 1497 
on E. coli BW25113 in control conditions and when 150nM B12 was supplemented. b, 1498 
Representative fluorescence images of the UBV::GFP and mCherry reporters from C. elegans 1499 
N2 strain (Control), acdh-1(0), hphd-1(0) in combination with KO Empty Vector (EV), suca-1, 1500 
oxct-1, alh-8 strains fed on E. coli BW25113. c, Fluorescence quantification of the reporters 1501 
UBV::GFP and mCherry ratio in the worm strains from b. Stars describe the significance, the 1502 
colour describes to what control have they been tested (n=4, *P < 0.05, **P < 0.01, ***P < 1503 
0.001, NS P > 0.05, one-way ANOVA). d, Representative fluorescence images of the 1504 
UBV::GFP and mCherry reporters from C. elegans N2 strain fed with control E. coli BW25113, 1505 
ΔatoA and ΔatoB mutants in control conditions and when 10 mM of acetoacetate were 1506 
supplemented.  1507 
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