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ABSTRACT

Understanding how bacterial diversity at strain level resolution shapes host physiology is a
central challenge in microbiome research. The vast, functionally unknown genetic diversity
within a species pangenome makes it difficult to connect genes to function and their impact
on host physiology. Here, we explore how the functional landscape of the Escherichia coli
pangenome impacts transcriptional responses in Caenorhabditis elegans and show that
traditional gene-centric methods fail to provide significant functional associations with the host.
Thus, we developed a pangenome framework that leverages the protein language model
ProtT5 and generates unique strain embeddings representing the functional potential of each
9,558 E. coli isolate. Stratification of the pangenome into distinct functional guilds aligned with
key host processes such as cell division, metabolism and proteostasis. Further, we identify a
critical interplay between the extensive network of bacterial chaperones and proteases in
regulating host proteostasis. We find that the bacterial chaperone DNAK/HSP70 and protease
ClpX fine-tune the host ubiquitin-proteasome system by controlling propionate and vitamin
B12 availability. These findings reveal a conserved ‘co-proteostasis’ mechanism as a key
phenomenon modulating host-microbe interactions through metabolic communication. Our
pangenome-to-phenotype approach offers a powerful strategy to decode bacterial
pangenome functional diversity, directly linking microbial genomic variation to host

physiological outcomes.
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INTRODUCTION

The metabolic capacity of the host is vastly expanded by its resident microbiome, yet
correlating specific microbial signatures with physiological outcomes remains a fundamental
challenge. Animal models such as Caenorhabditis elegans have been successfully
repurposed as biosensors to study the mechanisms underlying host-microbe interactions’=.
However, while strain-specific impacts on host physiology are increasingly recognized, the
vast genetic diversity within individual bacterial species remains largely underexplored.
Current strategies relying on phylogenetic markers or linear reference genomes fail to fully
capture this functional potential, leaving a gap in our ability to predict how intra-species genetic
heterogeneity drives distinct host phenotypes®. The E. coli pangenome represents a vast
reservoir of uncharted metabolic potential given its ecological ubiquity and open genomic
architecture®®. For instance, distinct E. coli strains elicit divergent host responses through
differential production of metabolites, such as vitamin B12 or betaine’®. Yet, standard
laboratory strains often used to study these interactions capture only a fraction of this natural
diversity'®. Consequently, we require analytical frameworks that move beyond sequence
identity to capture the latent functional potential of bacterial proteomes and map them directly
to host physiology, thereby bridging the gap between reductionist models and the complex

reality of natural microbiomes".

Here, we bridge this gap by combining high-throughput transcriptomics of C. elegans with a
novel machine-learning approach that utilizes the protein language model (pLM) ProtT5' to
recreate the functional landscape of a pangenome of 9,558 E. coli assemblies. We integrated
the geometrical representation from the pLM with the genetic background of the strains to
generate strain embeddings, vector representations encapsulating the total functional
potential of a bacterial strain. By exposing C. elegans to a diverse library of 592 E. coli strains,
we demonstrate that the geometry of the bacterial embedding space accurately predicts host
phenotypic variance, revealing a profound link between the microbial pangenome and host
proteostasis. We identify a cross-domain co-proteostasis mechanism where the bacterial
chaperone network (DnaK/ClpX) regulates vitamin B12 and propionate metabolism, dictating
metabolic rewiring in the host through B12-dependent or independent metabolic shunt that

regulates host ubiquitin-proteasome system (UPS) function.
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84 RESULTS
85
86 The E. coli pangenome elicits a vast range of transcriptomic profiles in C. elegans
87  E. coliis known to have an open pangenome®, meaning that the various strains within the E.
88  coli species contain unique genes coding for proteins whose functions are essential for their
89  distinct functional properties. We hypothesized that the extensive genetic variation within the
90 E. coli pangenome dictates host responses. To interrogate these host responses to individual
91 bacterial strains, we generated high-resolution bulk RNAseq transcriptional profiles for 592
92  distinct E. coli — C. elegans mono-association pairs (Fig. 1a). We curated a library combining
93 the EcoRef collection and additional strains with broad phylogenetic coverage (Fig. 1b)'°.
94  This panel spans the major E. coli phylogroups, evolutionary lineages defined by specific gene
95 markers that are traditionally linked to distinct ecological roles and primarily comprises
96 commensal strains isolated from human and animal hosts (Fig. 1c; Extended Data Fig. 1a),
97  with roughly 50% belonging to phylogroup B2. Analysis of the strain genomes confirmed an
98 open pangenome architecture: a conserved core of 3,265 gene families (>95% presence), a
99  shell genome of 2,589 gene families (15% - 95% presence), and a diverse and large cloud
100 genome of 20,113 rare gene families (<15% presence) (Fig. 1d). This distribution highlights
101 the immense reservoir of genetic diversity available to influence host physiology. Next, we
102  profiled the host response by raising synchronized C. elegans (N2) on each bacterial strain
103 and sequencing total RNA from Day 1 adults. Following rigorous quality filtering and batch
104  effect correction (Extended Data Fig. 1b-d), we established a robust transcriptional dataset
105 comprising 16,410 unique genes. This yielded high-coverage data with an average of 8,545 +
106 254 transcripts detected per sample (Extended Data Fig. 1e). Remarkably, we found that the
107  commonly used laboratory strain E. coli OP50 used for most studies in classic genetics and
108 aging related publications induces a transcriptional profile in C. elegans distinct to the
109 transcriptional signatures of the majority of strains (Fig. 1e), including the K-12 MG1665 lab
110  strain whose genome was one of the first E. coli reference sequences to be completed and
111 extensively curated.
112
113  Next, we investigated whether grouping strains by phylogroup, as a proxy for bacterial
114  function, would reveal a structure in the worm transcriptional response to the E. coli strain
115  panel. The whole transcriptional profiles were correlated to the phylogroup partitioning of the
116  E. coli pangenome and variance explained by this functional division was measured. Principal
117  component analysis (PCA) revealed a modest separation between the phylogroups included
118 in this screening (Fig. 1f), consistent with a weak clustering of pairwise Euclidean distances
119  between strains (Extended Data Fig. 1d). Moreover, a permutational analysis of variance

120 (PERMANOVA) for the full transcriptome dataset indicated a significant effect of phylogroup.
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121 However, the model explained only approximately 1.5% variance. Nevertheless, the large
122  Euclidean distance in transcriptional responses observed between strains known to elicit a
123  distinct physiological response in the worm such as OP50 and MG1655 (Extended Data Fig.
124  1f), suggests that a robust biological signal exists within this transcriptional landscape. To
125 facilitate mapping the worm response onto the E. coli pangenome, we reasoned that clustering
126  the normalized read counts to discrete functional categories would improve our ability to map

127  worm response. For this, the curated worm database from Holdorf et al.’®

was leveraged and
128 normalized read counts were aggregated for all genes within each functional category at the
129 three defined hierarchical levels defined in the database (Fig. 1a). This yielded three matrices
130 of increased granularity, ranging from 33 broad categories (level 1) to 461 highly specific
131  functional categories (level 3). This stratification generated a dense phenotypic landscape
132  comprising 272,912 phenotypic worm data points at level 3 functional category resolution.
133  PCA for each category (Fig. 1g) revealed a complex landscape where simple patterns remain
134  elusive, underscoring the difficulty of mapping pangenome structure onto worm responses
135  using traditional means. While PERMANOVA testing for level 3 functional categories identified
136  a statistically significant effect (P= 0.041), the low variance explained (1.45%) highlights that
137  evolutionary history alone is a minor driver of host phenotype. Together, these results show
138 that C. elegans mounts highly-strain specific responses to E. coli strains, both at the whole
139 transcriptional level and at the functional category levels. This confirms that the openness and
140  complexity of the E. coli pangenome pose a high-dimensional biological challenge that cannot
141 be fully captured by a standard phylogenetics approach.

142

143  The functional content of E. coli is encoded in the protein embedding space

144  The genetic repertoire of commonly used laboratory strains represents only a fraction of the
145  total species diversity °. However, there is a consensus supporting that E. coli clades, whether
146  classified from multi-locus sequence typing (MLST) or broader phylogroup classification,
147  harbor characteristic functional enrichments associated with their primary ecological
148  niche®'®', Given the shortcomings of current approaches, to systematically investigate the
149  functional diversity of the E. coli pangenome, we established a comprehensive panel of
150 genome assembilies to fully capture this functional richness. We accessed the NCBI Genomes
151 database (Jan 2024) and selected 8,829 high-quality genome assemblies, to which we added
152  assemblies for the strains available in our laboratory, yielding a total of 9,558 high-quality
153 genomes (see Methods, Extended Data Fig.1g). Phylogroup proportions in this extended
154  collection followed a similar pattern as in our laboratory panel (Fig. 2b, R = 0.82, p = 0.014,
155 Extended Data Fig. 2a). This resulted in a total of 92,435 gene families split into a core of
156 3,005 genes, a shell of 2,917 genes, and a cloud of 86,513 genes (Fig. 2a). Consistent with

157  previous work, the E. coli pangenome remained open as indicated by the Heap’s law fit (y =
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158  0.28, Extended Data Fig. 2b). However, we observe that new functions start to saturate, with
159 the core genome rapidly stabilizing. Additionally, the pairwise genetic similarity for this larger
160 panel is similar to our laboratory panel (Jaccard similarity of 0.641 and 0.65 respectively,
161 Extended Data Fig. 2c). Phylogeny on the core genome shows that E. coli robustly follows the
162  phylogroup evolutionary lineages (Fig. 2c). When considering gene presence-absence
163  patterns within the cloud genome as a proxy for differential functional content, strain
164  relationships strongly follow the same phylogenetic structure (Fig. 2d). This congruence
165 between core genome phylogeny and total gene content demonstrates that a shared
166  evolutionary history shapes the full genomic repertoire of E. coli, linking deep ancestry to
167  functional gene repertoire at the strain level.

168

169 To characterize functional content, four gene ontology (GO) annotation strategies were
170  benchmarked by leveraging the linear reference of representative gene families. The most
171  widely used methods rely on sequence similarity which favors accuracy at the cost of limited
172  range. Recently, the development of methods relying on machine learning (ML) models have
173  been proven to achieve significant improvements in quality and coverage'®. The 4 methods to
174  predict GO terms included Interproscan’® and eggNOG-mapper'’, which are based on
175  sequence similarity, and ML methods such as Proteinfer'®, a Convolutional Neural Network
176  method, and GoPredSim'®, which leverages the protein language model (pLM) ProtT5-XL-
177 BFD' by creating an embedding representation for each protein. ML-based approaches
178  annotated substantially more genes per genome than sequence-similarity based methods
179  (41.7-52.7% increase, Extended Data Fig. 2d, p<0.001, one-way ANOVA). This difference
180  was primarily driven by annotations in the cloud and shell genomes where unique sequences
181  are mostly found (Extended Data Fig. 2e,f). Despite this significant improvement, 2,873 gene
182  families remained unannotated. Exploiting the hierarchical information contained in GO
183  annotations, an analysis of the maximum information content per gene and method revealed
184  that the GoPredSim, which leverages the pLM ProtT5 embeddings, produced the most
185 informative annotations (Extended Data Fig. 2g). These results underscore that much of the
186  accessory functional landscape from E. coli remains largely uncharacterized but can be more
187  effectively represented using pLM embedding-based models, given the prediction abilities and
188  breadth of information.

189

190  Protein embeddings from the ProtT5-XL-BFD pLM were then used to create a comprehensive
191  functional map of the E. coli pangenome (Fig. 1a, Extended Data Fig.1g). PCA of the resulting
192  high-dimensional embeddings revealed a spatial organization aligned with pangenome
193  structure (Fig. 2e, Extended Data Fig. 2h). The core genome occupies a compact, dense

194  region of the space, which expands through the shell genome and into the vast, sparsely


https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.15.699719; this version posted January 15, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

195  populated region occupied by the cloud genome with significant differences between these
196  compartments (Fig. 2f, Extended Data Fig. 2h, p < 0.001, one-way ANOVA). This geometric
197 arrangement demonstrates that the embedding space quantitatively captures functional
198  diversity, transitioning from the conserved core functions to the diverse and mobile cloud
199  genome. Analysis of the COG categories further show that core-associated functions such as
200 energy production and conversion (C) or cell cycle control(D) are enriched in the dense core
201  region. However, functions known to be environment-dependent such as carbohydrate
202 transport (G), defense mechanisms (V) or poorly characterized (S) are shifted towards the
203  periphery (Figure 2g,h,i, Extended Data Fig. 2i,j,k). Collectively, these results establish that
204 the geometry of the protein embedding space created through the pLM ProtT5 acts as a
205 quantitative proxy for the pangenome’s functional architecture.

206

207  Given that the functional content of a pangenome is encoded in the geometry of the protein
208 embedding space, we extended this framework to establish a microbial strain identity, defined
209 by the combination of its conserved core functions and unique set of accessory functions.
210 Each strain was embedded as a single vector by combining binary gene content
211 (presence/absence) with the corresponding protein embeddings, calculated as an average of
212  all protein vectors considering the whole gene content (see Methods section), yielding a
213  unique representation per strain that determines their functional potential. PCA of these strain
214  embeddings produced a pangenome-level functional landscape in which strains are
215  positioned according to functional capacity (Fig. 2j, Extended Data Fig. 2l). The principal
216  component analysis of the strain embeddings revealed a structured functional landscape that
217  validates our model while highlighting the limitations of pure phylogeny approaches (p < 0.001,
218 one-way ANOVA, Extended Data Fig. 3b). PC2 (14.68%) cleanly separated phylogroups,
219  confirming that the embeddings correctly encoded the strains’ evolutionary history, whereas
220 PC1 (35.45%) was driven by within-phylogroup variability. This analysis proves that the vast
221 majority of E. coli functional diversity is driven by strain-specific adaptations. This pattern is
222  captured by alternative embedding methods, supporting the robustness of these findings
223  (Extended Data Fig. 3a,c). We observe the strain embeddings recaptures the clusters defined
224 by ecology and evolution where phylogroups A, B1 and C formed a clearly defined cluster,
225 followed by a distinct cluster composed of phylogroups D, E, F and G bridging towards the
226  phylogroup B2, which occupied a distinct, distant region. This separation of phylogroups along
227  PC2 supports the evolutionary history between the phylogroups (Fig.2i). Together, these
228 results demonstrate that protein language model embeddings provide a powerful, compact
229 representation of both genes and whole genomes, enabling the encoding of E. coli

230 pangenome structure, the delineation of conserved versus accessory functions, and the
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231 representation of entire strains as single, functionally meaningful vectors that can be directly
232 linked to host phenotypes.

233

234  Host physiology maps onto the strain embeddings functional landscape

235  We next hypothesized whether using the E. coli strain embeddings would improve our ability
236  to establish causal links between microbial functions and host physiology at the pathway level.
237  To this end, we leveraged the geometry of the PCA projection coordinates derived from the
238  strain embeddings as a functional map to position C. elegans transcriptional and functional
239 categories (Fig. 1a). The strain embedding map for the subset of E. coli strains used in
240 monoassociation experiments recapitulated the distinctive structure observed for the full
241 pangenome map, revealing a clear separation within and between phylogroups along PC1
242 and PC2 coordinates, respectively (Fig. 3a). To connect E. coli pangenome functional
243 landscape and the worm physiology, we calculated the Spearman correlations between the
244  level 3 pathway categories in the worm transcriptome to the PC1 and PC2 coordinates of the
245  strain embeddings. This analysis revealed a distinct set of host functional categories regulated
246  at the pangenome level (Fig. 3b). Notably, all significant correlations between host pathways
247  and strain embedding axes were linked to PC2, which separates the distinct phylogroups in
248 the pangenome (Fig. 3c, Extended Data Fig. 3d). The significant pathways involved in the host
249 physiology regulation at the pangenome level, clustered into biologically broad processes
250 including cell cycle, central and one-carbon metabolism, proteostasis and response to stress
251 (Fig. 3d, p < 0.05, BH correction). These processes have been formerly linked to the regulation
252  of several host phenotypes, including development and aging®®?2. Together, these findings
253  suggest that functional variation across the E. coli pangenome encodes regulatory signals that
254  can modulate core host physiological programs.

255

256  Given the E. coli pangenome functional landscape - host physiology connections, we sought
257  to validate these associations experimentally. We performed a reporter-based quantitative
258 screen of 13 fluorescent transcriptional or translational reporters representing key genes
259 within the main pathways identified in the functional mapping (Extended Data Fig. 4a). We
260 confirmed the robustness of the experimental pipeline by testing two independent biological
261 replicates over 589 E. coli pangenome strains for each reporter (Pearson correlation > 0.7,
262 Extended Data Fig. 4b). We then mapped the reporter gene expression levels to the E. coli
263 strain embeddings and found that all 13 gene reporter expression profiles significantly
264  correlated with the strain embedding geometrical projection, mirroring the transcriptional
265 landscape pattern observed (Fig. 3e, p < 0.05, BH correction). Next, we leveraged these data
266 to obtain further insights between microbe-host functional relationships. Plotting reporter

267  expression by strain revealed distinct transcriptional programs which were largely independent
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268 of their phylogenetic relatedness (Extended Data Fig. 4c). Similarly, pairwise strain
269 correlations of reporter activity indicated that bacterial functional guilds transcended
270 phylogenetic relatedness on regulating specific host transcriptional responses (Fig. 3f,g,
271 Extended Data Fig. 4d). Interestingly, we observed a global bias towards positive associations
272  between strain pairs (~65%, Extended Data Fig. 4e, f), implying a shared host transcriptional
273 response across the E. coli pangenome. Consistent with this, we observed significant pairwise
274  correlations between the 13 reporters (Fig. 3h).

275

276  Together, these results show that the E. coli functional landscape can be quantitatively
277 mapped onto the host transcriptional and physiological programs by leveraging strain
278 embeddings, uncovering bacterial-driven regulation of fundamental host processes such as
279 central and 1CC metabolism, stress response, or proteostasis. Based on these findings, we
280 next examined how E. coli influences host proteostasis, which remain insufficiently
281 characterized in this context.

282

283 Propionate and vitamin B12 at the interface of bacterial-host “co-proteostasis”

284  In eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a central role in maintaining
285  proteostasis by controlling the degradation of damaged proteins. Yet, how the UPS integrates
286  environmental signals to support organismal physiology remains poorly understood. First, we
287 grew the C. elegans ubiquitin-proteasome (UPS) reporter strain®® on individual bacterial
288 isolates from distinct phyla of the C. elegans microbiome?®*. Host proteostasis displayed strong
289  bacterial strain-dependent variation (Extended Data Fig. 5a, as observed for the E. coli
290 pangenome (Extended Data Fig. 4c) and E. coli laboratory strains®®, suggesting fine levels of
291  mechanistic regulation. To identify the underlying mechanism(s), we performed a qualitative
292  screen using the UPS worm reporter strain, together with the single deletion E. coli KEIO
293 library and found that deletion of the protease Lon and the homolog of the heat shock protein
294  HSP70/DnaK/Dnad significantly decreased or increased UPS fluorescence, respectively. This
295 led us to hypothesize that bacterial proteostasis could regulate host proteostasis. Next, we
296 quantitatively tested all known E. coli chaperones as well as proteases (Fig. 4a). We confirmed
297  that deletion of the functional DnaK and DnaJ heat shock pair increased UPS fluorescence
298 and respective protein levels, while deletion of Lon, ClpX, BepA proteases and HitpG, HscA,
299 CbpM chaperones (Fig. 4b,c; Extended Data Fig. 5b-d) significantly reduced UPS

300 fluorescence and protein levels.

301 To better understand the regulatory networks between these chaperones and proteases and
302 the potential mechanisms involved in the regulation of host proteostasis, we performed

303 proteomics of each individual mutant strain. Deletion of dnaK led to pronounced changes in
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304 the proteome landscape followed by the deletion of lon and clpX (Extended Data Fig. 6a). We
305 observed an intricate compensatory mechanism whereby the single deletion of any of these
306 proteases or chaperones leads to significant changes in a network of other chaperones and
307 proteases (Extended Data Fig. 6b), with greater effects observed for dnaK and clpX mutants.
308 Thus, we tested whether co-regulatory effects of proteases and chaperones could regulate
309 host UPS response through the creation of double-mutant E. coli strains of dnaK. Notably,
310 only the combined loss of dnaK and clpX abolished the UPS activation induced by the dnaK
311 mutant alone (Fig. 4e, Extended Data Fig. 6¢,d) without compromising bacterial fithess
312  (Extended Data Fig. 7a). U.V-irradiation experiments to abolish metabolic activity of E. coli
313  and alter their metabolome?, further show that UPS regulation was dependent on the active
314  metabolism of E. coli (Fig. 4f, Extended Data Fig. 6e). To identify the potential mechanism(s)
315 responsible, we performed proteomics in both single and double E. coli mutants (Fig. 4g,
316  Extended Data Fig. 7) as well as in worms grown on these bacteria (Fig. 4h, Extended Data
317  Fig. 8). Despite functional rescue at the host level, the dnaKclpX double mutant exhibited a
318  unique proteomic signature distinct from both single mutants and wild-type E. coli (Extended
319 Data Fig. 7b), as well as in worms (Extended Data Fig. 8a). KEGG analysis in both E. coli
320 (Extended Data Fig. 7c-g) and C. elegans (Extended Data Fig. 8b-f) with a focus on the
321 comparison between up and downregulated proteins of dnaKclpX versus dnaK (Fig. 4g-h),
322  which links to the loss of dnaK effects on host UPS, showed enrichment of central carbon and
323 amino acid metabolism pathways—particularly branched-chain amino acid (BCAA previously
324  identified as an important UPS regulator?”) and propionate metabolism, two directly connected
325 metabolic pathways through the sharing of propionyl-CoA—suggesting a role for metabolic
326  cross-talk in modulating host proteostasis. To determine how E. coli regulated BCAA and
327  propionate metabolism, we compared all proteins that were significantly down-regulated in
328 dnaK mutants while up-regulated in both clpX and dnaKclpX mutants (Fig. 4i). From the 33
329 proteins shown to be significant in these comparisons, the tree proteins of the TonB-ExbB-
330 ExbD energy transduction complex were strongly enriched for the Gene Ontology Molecular
331  function of energy transducer activity (FDR=0.0111, Strength=2.1) which are involved in the
332 transport of iron and vitamin B12 (VB12)%. Given the well described role of bacterial VB12 in
333 the regulation of BCAA and propionate homeostasis in the host®?, we investigated whether
334 VB12 and/or propionate metabolites regulated UPS proteostasis. First, we created triple
335 mutants of all known iron transporters in E. coli and observed that only the deletion of TonB
336 significantly increased the levels of UPS fluorescence when compared to the effect observed
337 when fed dnaKclpX mutants (Fig. 4j, p=0.0008, Extended Data Fig. 9a, b) suggesting a
338 regulation of TonB levels by DnaK that are controlled by ClpX. Consistent with this
339 observation, the overexpression of TonB in a dnaK or dnaKclpX mutant significantly reduced

340 UPS levels (Extended Data Fig. 9¢). Overexpression of BtuB protein, a specific transporter of
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341 VB12, also reduced dnaKclpX levels to baseline levels (Extended Data Fig. 9d) and this
342  required TonB, confirming that canonical tonB-BtuB-dependent VB12 transport is central to
343 this regulatory axis. Supplementation of VB12 uniformly decreased UPS levels in all bacterial
344  mutant backgrounds (Fig. 4k, Extended Data Fig. 9e) but significant differences in UPS levels
345  between them suggested the role of additional metabolites shaping host proteostasis. Given
346  the role of VB12 in regulating propionate metabolism, we supplemented propionate and found
347  that propionate increased UPS levels in worms fed control bacteria and dnaKclpX mutants but
348 not dnaK (Fig. 41, Extended Data Fig. 9f). Together with our proteomic data (Fig. 49g), it
349  suggested a role for propionate as a potential metabolite regulating host proteostasis. Deletion
350 of the sbm operon, which encodes enzymes for the “sleeping beauty” mutase pathway that
351  converts BCAAs—particularly isoleucine—into propionate®®, abolished the dnaK-induced UPS
352 increase without affecting bacterial fitness (Fig. 4m, Extended Data Fig 9g,h), directly linking

353  bacterial propionate production to host UPS activation.

354 In C. elegans, propionate catabolism proceeds through a VB12-dependent canonical pathway
355 and a VB12-independent “propionate shunt,” whose activation can be monitored by the acdh-
356  1p::GFP reporter®?. Worms fed dnaK mutants showed increased acdh-1 levels, indicating
357 elevated flux through the VB12-independent shunt, whereas worms fed dnaKclpX bacteria did
358 not (Fig. 4n), consistent with proteomic evidence that dnaKclpX suppresses dnaK-driven
359 metabolic rewiring. Genetic inhibition of the shunt downstream of acdh-1 (e.g., hphd-1, alh-8)
360 orthe canonical pathway (e.g., mce-1) elevated UPS activity (Fig. 40, Extended Data Fig. 10a-
361 c), while VB12 supplementation reduced UPS levels in wild-type and acdh-1 mutants but not
362 in mce-1 or hphd-1 mutants, demonstrating that the balance between VB12-dependent and -
363 independent propionate catabolism determines the impact of propionate on proteostasis.
364  Proteomic analyses of worms fed dnaK versus dnaKclpX bacteria revealed enrichment of
365 pathways linked to ketone metabolism (Fig. 4h), aligning with previous reports that
366  perturbations in propionate catabolism can alter ketone body pathways®*. RNAi of suca-1,
367  which contributes to conversion of acetoacetate to acetoacetyl-CoA (Extended Data Fig 10b),
368 increased UPS activity, whereas exogenous acetoacetate supplementation (independent of
369 its degradation by atoA or atoB) decreased UPS levels (Fig. 4p, Extended Data Fig 10d) ,

370  suggesting that ketone intermediates can directly modulate host proteostasis.

371  Collectively, these findings define a mechanistic chain in which bacterial DnaK-ClpX-TonB—
372  BtuB control bacterial proteostasis and VB12 transport, thereby shaping propionate production
373  and routing in the host, which in turn determines the balance between toxic VB12-independent
374  catabolites and protective VB12-dependent flux, ultimately tuning UPS activity and

375 proteostasis in C. elegans.
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377 DISCUSION

378

379 Metagenomic sequencing and other state-of-the art technical advances now enable high
380 throughput, high-resolution scale analyses of microbial strains across diverse and complex
381 ecosystems ranging from the human gut to marine and soil environments. Strain-level
382  resolution has recently been shown to be crucial in microbiome research and in dictating
383  microbe-host interactions. For example, strains of the same species can have diametrically
384  opposed functional, ecological, and clinical manifestations, with species-level identification
385 often leading to erroneous interpretations®'. Strain-level characterization has also been
386 emphasized in how bacterial strains are transmitted in human populations, highlighting the
387  importance of the need to consider their biological effects 3233, Escherichia coli has become a
388 canonical example of the diversity displayed by a bacterial species, showing that its vast
389  accessory genome harbored in its open pangenome contains an extensive array of bacterial
390 functions that can potentially alter host physiology®'®. Our panel shows that any two given
391  strains can differ by more than 50% of their genetic content. A central challenge in
392  understanding the microbiome is reconciling the inherent genetic diversity contained within
393  bacterial species and how this affects host physiology®*3°.

394

395 Here, we present the most comprehensive analysis to date of how strain level variation within
396 a single bacterial species shapes host responses. Given the challenge in defining bacterial
397 functions for the poorly described microbial accessory genes, methods based in the
398 transformers architecture have been trained over large protein databases creating physical

%37 In this work, we

399 representations of the protein space encoded in the microbiome
400 leveraged the protein embeddings predicted by the pLM' to study the latent functional
401 landscape encoded in the E. coli pangenome. By compressing the genomic and functional
402 information encoded in thousands of E. coli strains into unified “strain embeddings”, we
403 created a geometric map that captures the potential function per strain, which can be mapped
404  onto the host phenotype it elicits. By building a high-throughput panel of strain-host mono-
405  association spanning hundreds of E. coli strains, we have established an experimental
406  platform validating our computational approach and providing additional mechanistic insights.
407  Together, our data uncovers several fundamental principles in microbe-host biology at the
408  strain level. 1) Each strain elicits a unique molecular signature in the host; 2) our data shows
409 that the protein functions shared by every strain (the core) are located in a narrow geometrical
410 space compared to the vast strain-specific functions, 3) strains within the same phylogroup
411 display an ~60:40 of positively to negatively correlated effects on host responses; and 4)
412  phylogenetic relatedness between strains does not predict the host molecular programs they

413 induce. Our data supports the hypothesis that phylogeny, while important, is inadequate as a
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414  single factor to link bacterial functions to host physiology. Future work will be required to
415  determine how strain-level effects manifest in the context of complex microbiota and to test
416  whether these basic principles extend to other bacterial species with open or closed
417  pangenomes.

418

419 In line with this, the canonical laboratory microbial source for C. elegans, the Escherichia coli
420 OP50 strain, elicits a distinct and divergent molecular response in the host compared with
421  other E. coli strains (Fig. 1e). This observation is consistent with a growing number of studies
422  incorporating multiple bacterial strains reporting strain-dependent mechanisms underlying
423  diverse host phenotypes, including drug responses **%, behavior, reproduction, and lifespan
424 21494 Collectively, these findings suggest that the experimental convenience afforded by E.
425  coli OP50 may be offset by the specific molecular and physiological signature it imposes on
426  C. elegans, potentially failing to reflect the “true” wild-type biology of the host and motivating
427  a critical re-evaluation of the foundational literature of an entire field. This may possibly be
428  better captured using native microbiome C. elegans strains or alternatively, commensal E. coli
429  strains employed in this study. Using a protein-embedding framework, this work supports
430 these claims as it identifies a broad repertoire of bacterial functions, spanning many COG
431  functional categories with known effects on host physiology, that are regulated at the level of
432  the bacterial pangenome. Among the most significantly enriched categories is proteolysis.
433  Notably, recent work has demonstrated that differences in bacterial-derived RNAs between E.
434  coli OP50 and HT115 can trigger a systemic response in C. elegans that protect against
435 protein aggregation during aging*?. Likewise, the present study reveals pronounced
436  differences among E. coli strains (Extended Figure S4a) and strains belonging to bacterial
437  species from other phyla (Extended Figure S5a) in their ability to modulate the host ubiquitin—
438  proteasome system. Here, we demonstrate that key bacterial proteostasis regulators control
439  host UPS activity by modulating the availability of vitamin B12 and propionate, which in turn
440  dictates the flux through host propionate degradation pathways. Bacteria that produce or
441 efficiently scavenge B12 can control community composition and metabolic activity by
442  outcompeting B12-dependent neighbors **#4. For example, B12 production by Eubacterium
443  hallii enables Akkermansia muciniphila to convert succinate to propionate, shifting succinate
444  levels, and thereby reshaping the surrounding metabolic network *°. Here, an unanticipated
445  mechanism is described in which the DnaK/J chaperone system and the ClpX protease act in
446  concert to fine tune B12 and propionate levels. While this regulatory axis may have evolved
447  primarily to modulate microbial community interactions, it also alters host proteostasis, giving
448  rise to what can be conceptualized as microbe—host “co-proteostasis” derived from microbe-

449 host co-metabolism cues.
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643 FIGURE LEGENDS

644

645 Figure 1. The physiology of C. elegans is regulated at the E. coli pangenome scale. a,
646  Schematic representation of experimental and analytical workflow: C. elegans transcriptomes
647  were profiled for each of the 592 E. coli strains and then summarized in WormCat functional
648  categories. The E. coli pangenome was calculated for 9,558 strains and its linear reference
649 was used to geometrically represent the functional potential per strain with the pLM ProtT5.
650 Both biological layers were used to map host-microbe functional landscapes. b, Phylogenetic
651 tree computed from the core genome fraction of the 592 E. coli strains panel with tips colored
652  following the major phylogroups. The tree branch length reflects genetic distances. ¢, Pie chart
653  showing the distribution of gene families belonging to the core (>95% presence), shell (95%
654 to 15% presence), or cloud (<15% presence) genome across the 592 E. coli strains. d,
655  Distribution of E. coli phylogroups across the 592 E. coli strains. e, Representation of the
656  transcriptional distance between two common E. coli lab strains belonging to the same
657  phylogroup, MG1655 and OP50, which are known to induce differences in the worm
658  physiology. f, Principal component analysis (PCA) of the whole C. elegans transcriptional
659 profiles. Each point representing animals raised on a single E. coli strain and colored by the
660 phylogroup of the corresponding strain. g, PCA of WormCat level 1, level 2 and level 3
661 categories, depicting the functional landscape of C. elegans transcriptional responses to the
662 E. coli strain panel. Each point represents the WormCat functional category for a given strain

663 and colored by the phylogroup of the corresponding E. coli strain.
664

665 Figure 2. The functional landscape encoded in the E. coli pangenome can be leveraged
666 to create a functional map of the species. a, Pie chart showing the number of gene families
667 assigned to the core (>95% presence), shell (95% to 15% presence), or cloud (<15%
668 presence) genome across the 9 558 E. coli strains. b, Distribution of E. coli phylogroups across
669 the 9 558 E. coli strains. ¢, Phylogenetic tree computed from a set of 275 conserved genes
670 from the core genome of the 9,558 E. coli strains. Tips are colored following the major
671 phylogroups and the tree branch lengths reflect genetic distances. d, PCA of gene
672  presence/absence across the cloud genome of the E. coli strain panel. Each point represents
673 a strain, colored by phylogroup. e, PCA projection of protein embeddings with
674  Orange/Pink/Green representing genes belonging to the cloud/shell/core genome
675 respectively. f, Violin plots with box plots embedded representing the distribution from the
676  genome fractions per principal component (n = 92,244; p<0.001, One-way ANOVA). g, PCA
677  projection of protein embeddings for genes belonging to the COG category C, Energy
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678  Production and Conversion. h, PCA projection of protein embeddings for genes belonging to
679 the COG category S, Unknown. i, Box plots of the PCA coordinates per COG category
680  belonging to the major category of Metabolism and Poorly Characterized (n = 33-18,050). (NS
681 P > 0.05, *P < 0.05, **P < 0.01, **P < 0.001, two-tailed pairwise T-test with BH). j, PCA
682  projection of the 9,558 E. coli strain embeddings, colored and split by their respective

683  phylogroups.
684

685 Figure 3. E. coli strain embeddings map bacterial functional landscape onto host
686 functional responses. a, PCA projection for the 592 E. coli strain embeddings included in the
687 RNA-seq screen with points colored by phylogroup. b, PCA projection of the 592 E. coli strain
688 embeddings with dots colored by Methionine functional scores derived from C. elegans
689 transcriptomes. (n = 592, Spearman correlation, *P < 0.05, **P < 0.01, ***P < 0.001). c,
690 Spearman correlation plots for the two Principal Components with the Methionine functional
691 scores. Spearman correlation coefficient is represented as the p value (n = 592). d, Bubble
692 plot summarizing Spearman correlation coefficients (p) for significant WormCat functional
693 categories and PC2 of the strain-embedding PCA across the 592 strains. e, Spearman
694  correlations between the PC2 of the strain embeddings PCA and biologically relevant C.
695 elegans gene reporter phenotypes. Each facet shows the relationship between PC2 of the E.
696  coli strain-embedding PCA (x-axis) and normalized mean reporter intensity from the high-
697  throughput imaging screen (y-axis) for each C. elegans gene reporter. Spearman correlation
698 coefficients (p) and significance are represented for each case. f-g, Strain-strain Pearson
699 correlation heat map derived from the C. elegans gene reporter. Strains are clustered by their
700 phylogenetic distances (f) or by their reporter activity (g) and colored by phylogroup (n = 589).
701 h, Pearson correlation between C. elegans gene reporter data shown as circles (lower

702 triangle) and correlation values (upper triangle) (n = 589).
703

704 Figure 4. Proteostasis state in E. coli regulates proteostasis regulation at the host level.
705 a, Normalized brightness of the worm reporter UBV::GFP as a ratio of GFP over mCherry
706  (UPS fluorescence) fed on E. coli knock-out for proteins involved in bacterial proteostasis
707  (n=3-8). b, Fluorescent microscope images of the worm reporters UBV::GFP fed on E. coli
708  significant mutants identified in a. ¢, GFP and tubulin (housekeeping protein) quantification
709  with western blot normalized over mCherry for the significant proteins (n=4). d, Bi-partite
710  network representation of the proteome derived from the KO E. coli gene AdnaK, Alon, AclpX
711 and AcbpM compared to the control strain. Nodes are bacterial strains (orange) and significant

712  proteins (grey). Edges represent protein expression (red for increased, blue for decreased)
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713 and protein-protein interactions from STRING (grey). e, Normalized UPS fluorescence of
714  worms fed on BW25113 and mutants AdnaK, AclpX and AdnaKAclpX (n=4). f, Normalized
715  UPS fluorescence of worms fed on BW25113 and mutants AdnaK and AclpX living bacteria (-
716 ) and UV-irradiated bacteria (+) (n=5). g,h KEGG Pathways enriched from the E. coli (g) and
717  C. elegans (h) proteomics from the AdnaKAclpX vs Adna comparison. i, Heat map of the
718  significant protein expression from the AdnaK versus AclpX and AdnaKAclpX. j, Normalized
719  UPS fluorescence of worms fed on E. coli mutants AdnaK, AdnaKAtonB, AdnaKAclpX,
720  AdnaKAclpXAtonB (n=5). k, Normalized UPS fluorescence of worms fed on E. coli BW25113,
721  AdnaK, AclpX, AdnaKAclpX in the presence (+) or absence (-) of vitamin B12 (150 nM) (n=3-
722 6). |, Normalized UPS fluorescence of worms fed on BW25113, AdnaK and AdnaKAcipX
723  supplemented with propionate (0, 1 and 3 mM) (n=3). m, Normalized UPS fluorescence of
724  worms fed on BW25113 and strains Ascp, AdnaK, AdnaKAscp (n=5). n, Normalized UPS
725  fluorescence of worms fed on BW25113 and strains AdnaK, AclpX and AdnaKAclpX (n=4-6).
726 o, Normalized UPS fluorescence of worms fed on BW25113 for wild-type C. elegans N2 (Ctrl)
727  and worm mutants acdh-1(0), hphd-1(0), mce-1(0) in the presence (+) and absence (-) of
728  vitamin B12 (150 nM) (n=4). p, Normalized UPS fluorescence of worms fed on BW25113 and
729  strains AatoA, AatoB with and without acetoacetate (10mM) (n=3). q, Scheme showing that
730  proteostasis regulation at the bacterial level regulates the host response and proteostasis
731 status via propionate and vitamin B12. Stats correspond to comparison against the control
732  (one-way ANOVA) and between nested conditions (two-way ANOVA), represented as *P <
733  0.05, **P < 0.01, ***P < 0.001, NS P > 0.05.

734

735
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736 METHODS

737

738 RNA sequencing of C. elegans fed on PG E. coli strains

739  Around 30 C. elegans animals were grown per well in 96-well microtiter plates, each well
740  containing NGM seeded with a distinct E. coli strain. On day 1 of adulthood the worms were
741 transferred in a high-throughput manner to clean 96 well plates using INTEGRA Viaflo 96
742  liquid handler. Worms were washed twice with RNase-free water to remove bacterial traces
743 and flash-frozen in liquid nitrogen. For lysis, we used bead-based mechanical disruption
744  (Bertin Technologies) in RNA lysis buffer (Zymo Research) and on a bench top Eppendorf
745  Thermomixer C at 2000rpm for 20 min at 4°C. RNA was concentrated and purified with the
746  RNA Clean & Concentrator-96 kit (Zymo Research). Samples were eluted into microtiter plates
747  and stored at -80°C prior to library preparation. We quantified and checked the integrity of the
748 RNA and selected batches of 48 RNA samples with similar quality to ensure uniform RNA
749  input. To obtain comprehensive coverage of expressed genes in the C. elegans host, we
750 employed Lexogen QuantSeq-Pool Sample-Barcoded 3° mRNA-Seq Library Preparation.
751 Each RNA sample was labelled with a unique 12-nucleotide i1 sequence barcode before
752  conversion to cDNA and pooling. Before amplification, each cDNA pool was dual-indexed with
753  12-nucleotide i5/i7 index sequences. To validate the RNA extraction and library preparation
754  we prepared a test-pool library from conventional E. coli laboratory strains. We performed pair-
755  ended sequencing of the test pool on an lllumina MiSeq sequencer and obtained successful
756  demultiplexing. In total, we prepared 16 libraries that were normalized for final pool sequencing
757  based on library quantification by Qubit 3.0 fluorometer and average library size measured by
758  TapeStation 4200. To remove E. coli phylogroup representation biases we randomly
759  distributed strains in the different libraries.

760

761 Sequencing was performed on an lllumina MiSeq. Sequences were demultiplexed using
762 DRAGEN GenerateFastQ (v3.7.4) by using the i5/i7 barcodes to separate the different
763 libraries. Each library was further demultiplexed by using idemux (v.0.1.6) and by using each
764  library and sample i1 barcode identifiers. Sequences were quality-cleaned with trimmomatic
765  (v.0.39), removing lllumina adapters and dropping sequences below 65 nucleotides. Lexogen
766  recommends trimming the first 12 nucleotides of each read, a step that can be avoided if the
767  aligner used to map the reads can perform soft-clipping, which was our case with salmon
768  (v.1.10.1). Outlier samples with extremely low read count were discarded at this point. Quality-
769 filtered reads were then filtered to exclude samples with less than 4x1075 reads, resulting in
770  the discard of 59 samples mainly from libraries 14 and 15. 661 samples were kept for posterior
771  analyses (606 unique strains). Reads have been mapped to the cDNA of the C. elegans

772  reference genome in Ensembl (version 111) with salmon (v.1.10.2), which performs soft-
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773  clipping, to build the counts matrix and then imported to R with tximport (v.1.28). were
774  analyzed with DESeq2* (v.1.40.1) using the phylogroup as the main group and using the
775 library information to avoid possible batch effect Genes that had less than 10 reads in total
776  were discarded. PCA calculations were performed with the plotPCA function from DESeq2
777  with the data transformed with the vst function. Outliers from the PCA plot from normalized
778 counts but not batch-corrected were removed from the analysis. Batch correction was
779  performed with the removeBatchEffect function from limma*’ (v.3.64.1). Per-gene variance
780  was modelled with the function modelGeneVar from the scran package*® (v.1.36.0).

781

782  To build the transcriptional landscapes from the worm, the curated database from WormCat'?
783  containing categories at level 1 to 3 was downloaded (Nov-2021 version). The genes
784  Dbelonging to each category per level were summed by using the normalized and batch-
785  corrected reads from the transcriptional profile. A single value was obtained per category, level
786  and strain, which was used for downstream analyses.

787

788 E. coli strain landscape selection

789 The E. coli strains were selected from the NCBI genome database. The metadata was
790 downloaded on January 11th, 2024, and was downloaded with the NCBI dataset download
791  tool (v. 16.2.0). The strains were filtered based on the criteria described here. Genomes that
792  were not at the assembly level of “chromosome”, “complete genome” or “scaffold” were
793 removed. The scaffold N50 was used to filter out genomes with a value lower than 150K.
794  CheckM metrics were used to remove genomes with a completeness lower than 95% and a
795  contamination higher than 1%. Mash distances (mash v. 1.1)* were calculated pairwise
796  between all genomes, and those strains whose mean distances were higher than 0.05 were
797  removed. Finally, genomes with a sequence length greater than 7Mbp, and/or genomes with
798  a contig count higher than 300 were removed. This resulted in 8,829 assemblies passing all
799 filters. 517 strains were added from the EcoRef collection', where evolution-related strains
800 were discarded from the analysis. 212 commensal strains were added from human isolates
801  from Australia®. Phylogroups were assigned with the EzClermont v. 0.7.0 tool®® (tool based on
802 the approach from ClermonTyping®'), and genomes belonging to class cryptic, U/cryptic and
803 fails were discarded. The final number of genomes was 9,558 assemblies.

804

805 Gene annotation and pangenome analysis

806  Genome annotation was performed with Bakta®® (v. 1.9.3) using the full database (v. 5.1) using
807 by default parameters. The pangenome was analyzed with Panaroo®, selecting a strict clean
808 mode and removing invalid genes. Due to the complexity of this pangenome and the

809 computation time, the pangenome was split into 5 parts containing approximately 2000
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810 random genomes each. Each pangenome was calculated using the same parameters. The
811 output from the 5 calculations was merged into the final output using the Panaroo-merge
812  function from the main pipeline. The reference sequences from the gene families were then
813 translated into proteins (using a custom Python script with biopython v. 1.84). Gene
814  presence/absence matrix was used to calculate the Principal Component Analysis shown in
815 the main text by using the PCA function from scikit-learn v. 1.5.1. The pangenome analysis
816 from the strains used for the C. elegans transcriptome and the reporter screening was
817  performed independently by leveraging the annotations obtained with Bakta and running the
818  pipeline as a single process this time (592 strains in total).

819

820  Gene presence/absence matrix was used to generate the accumulation curve (ACC) for the
821  full E. coli panel of 9,558 strains, and to calculate the Heap’s law. The ACC was generated by
822  first removing gene families that were present in more than 99% of the strains, then dividing
823 the total gene count into 50 sampling points and randomly picking genomes for each sampling
824  point to count the number of genes. This process was iterated over 5 times. Heap'’s law was
825 calculated to fit the following equation:

826 P = kx*NY

827  Pis the pangenome size, N is the number of genomes, and k and y are the parameters to fit.
828 Heap’s law parameters were fitted using the average of the ACC data per point with the nls
829  functionin R.

830

831 Pairwise strain genetic similarity was measured as the Jaccard similarity between every pair
832  of strains included in the study. It was calculated as the shared genetic content divided by the
833  union of their genetic content between each strain pair.

834

835 Phylogeny

836  From the core genome extracted from Panaroo, a subset of 275 genes present in all strains
837  was used to build the phylogenetic tree for the full E. coli panel. To avoid multicopy bias, only
838 one gene per strain was kept for the alignment. For the laboratory strains included in the
839  smaller panel we used the full core genome. The alignment was done using mafft® (v. 7. 526),
840 and the tree was constructed with IQ-Tree®® (v. 2.3.6) with the GTR+I+G substitution model.

841
842 GO term prediction

843 Sequence-based methods
844  Proteins were classified using two of the most popular sequence-based methods used in the
845  community: InterPro and eggNOG. Search in the InterPro databases was done using

846 interproscan v. 5.59-91.0"® with by default parameters. The search in the eggNOG database
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847  was done using eggnog-mapper v. 2.1.12" with MMseqs2 to look for novel families options
848 enabled. Results from both methods were filtered to remove entries that had an E-value larger
849  than 1e-5.

850

851 Machine learning methods

852  Reference genes from Panaroo were split into 4 smaller files to fit in memory. Proteinfer'®
853 source code was downloaded from github and function prediction was done by using 5
854  ensemble models and a reporting threshold of 0.3.

855 The reference genes from Panaroo were translated into proteins and sequences were
856  clustered with CD-HIT v. 4.8.1 (similarity threshold of 0.98) to remove similar sequences from
857 the dataset, resulting in 55,942 unique clusters. The resulting file was split into 20 smaller files
858 to fit into memory. Proteins were embedded with bio-embeddings pipeline (v.0.2.2), by using
859  the model ProtT5-XL-U50'? in half-precision mode. Proteins larger than 3,000 amino acids
860  were discarded to fit in memory. Transfer learning was done using available pipelines under
861  bio-embeddings that used goPredSim'®, using Euclidean distances and a k-nearest-neighbors
862 of 3. ProtT5 h5 file was used as a reference with GOA annotations from 2022. Proteinfer,
863  protein embeddings and transfer learning were carried in a computer with 32Gb of RAM and
864 an RTX 4080 GPU with 16Gb of memory.

865

866 Information content calculation

867  To calculate the information content (IC) of the GO terms predicted by the different tools, we

'®. Given that GO terms have a

868  used an adaptation of the method from Barrios-Nufiez et a
869 hierarchical structure, the deeper nodes from the branch will contain a higher functional
870 information. Considering that having a deep node in the branch is less likely than to have a
871 higher node with less information, we can approximate the information content of each node
872 by the negative logarithm of the probability for that node to be inferred:

873

874 IC = log,(p(t))

875

876  Where p(t) is the probability for that node, which can be calculated as:

877

child nodes
child nodes + ancestor nodes

878 p()=1-

879
880 IC was calculated by joining all the GO term predictions together to create a joint library of
881 terms for the pangenome. Given that we lack a pre-computed list of GO terms with their

882  probabilities as exist for reference organisms, we had to calculate these probabilities from
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883  scratch. We joined together all GO term predictions from the 4 methods and kept the uniquely
884  present GO terms. This allowed us to create a database whereby to filter the resulting steps.
885  To calculate the number of ancestors and child nodes from each term, OWLTools was used
886 (release 2024-06-12). The database used is the go-basic.obo from geneontology.org
887  (accessed in October 2024). From the joint set of unique GO terms we used the OWLTools-
888 Runner function to get both the ancestors and descendants from each node. As the
889 descendants from a node, especially from the ones up in the tree, can have many different
890 child nodes depending on the final function, we removed all the GO terms that were not

891 present in our joint dataset. The probability was calculated as defined but corrected as p(t) =

1
ancestor

892  p(t)( ) for the cases where no descendant was kept in the list, but the GO term did not

893  reach the bottom of the branch from the obo database.

894

895  Strain embeddings calculation

896  Strain embeddings were calculated based on the gene presence/absence matrix generated
897 by Panaroo, the protein embeddings generated by the pLM model ProtT5-XL-BFD, and the
898 number of genes per strain. To calculate any of the different strain embeddings versions
899  described below, we excluded the core genome set of genes, as they were not useful given
900 that all strains shared them.

901

902 Strain embeddings were generated using three distinct aggregation methods: 1) direct
903 summation via matrix multiplication; 2) simple averaging, normalized by the gene count per
904 strain to mitigate genome size bias; 3) weighted averaging, which employs an Inverse Gene
905 Frequency (IGF) metric. The three versions can be visualized in Extended Data Fig. S3a, the
906  strain embeddings have been uploaded to Zenodo (https://doi.org/10.5281/zenodo.18221759)
907

908 Matrix multiplication

909 The simplest form was calculated by multiplying the presence/absence matrix with the
910 embedding matrix with the following form:

911 S=AT-E

912  Where A is the binary matrix of gene presence/absence with nxm dimensions (genes and
913 genomes), E is the matrix of protein embeddings from the representative genes with nxd
914  dimensions (genes and embeddings), and S is the objective strain embeddings with mxd
915 dimensions (genomes and embeddings).

916

917  Average strain embeddings
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918  The average strain embeddings were calculated based on how many genes were encoded in
919 each genome and then applying a diagonal normalization on the matrix multiplication equation.
920 The diagonal normalization is a mxm matrix where the diagonal is the inverse of the number
921 of genes per strain, where N; is the number of present genes in strain i:

922

923 Dy = diag (i,i, i)
N,'N,” "N,

924

925  Therefore, the average strain embeddings were calculated as:

926

927 S,y = Dy(AT - E)

928

929  Where S, is the objective average strain embeddings with dimensions mxd.

930

931 Weighted average strain embeddings

932  Finally, the contribution for each gene to the strain potential was scaled in terms of their
933  proportion, thus, increasing the importance of rare genes to the final position of the strain
934 embedding. That is, genes that are common have a lower weight than the ones that are rarer.
935 To do so, relied on an adaptation of the Inverse Document Frequency metric that can be
936 adapted here as the Inverse Gene Frequency (IGF).

937  First, the Strain Count for a gene family (C;) was defined as the number of strains in which the
938 gene family i was present over the total number of strains (M). This was equivalent to the sum
939  of the i-th row of matrix A:

940
M

941 Ci = 2141',;
j=1

942

943  We next defined Weight for Gene Family i (W;) as the logarithm of the relative presence of a

944  specific gene family, where W; = 0 if C; = M (gene present in all strains):

M
945 W; = log (F)
i

946  We then defined the diagonal matrix with gene weights calculated from last equation as:
947

948 W = diag(Wy, W,, ... Wy,)

949
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950 Here W is a matrix of nxn dimensions. We then used this matrix to calculate the weighted
951  protein embeddings (E,,) as:

952

953 E,=W-E

954

955 Where E,, and E are matrices with nxd dimensions. Then we calculated the weighted sum of
956  embeddings (Syeightea_sum) fOr €ach strain as:

957

958 Sweightea_sum = A' * Ey, = AT (diag(W)E)

959

960  Where S,cighted_sum i @ mxd matrix. We proceeded by calculating the sum of weights for
961 each strain (W;,,,) as:

962

963 Weum = AT * Wiec

964

965 Where W, is an nx 1 column vector containing the W; values; and the sum of weights for
966  each strain j is Wy j = X1t Aij W,

967  We created another diagonal normalization matrix (D,,, an mxm matrix), where the diagonal

968 elements are the inverse of the sum of weights for each strain:

969

970 DW=diag< ! , ! ) e ! >
Wsuma Wsumz™ Wsumm

971

972  Finally, we used all these outputs to do the final calculation and got the weighted averaged
973  strain embeddings:

974

975 Swav = Dw * Sweightedsym = Dw(AT(W - E))

976

977  Where Dyis a mxm matrix, Syeighted sum i @ mxd matrix, and the product S,, 4, is a mxd
978  matrix whose each vector row §; is the weighted averaged embedding for strain ;.

979

980 Functional mapping onto host phenotype

981  Average strain embeddings from the 9,558 E. coli strains were used to create a Principal
982 Component Analysis in R using the prcomp function. The PCA coordinates were then
983 leveraged to create the pangenome-host functional mapping. The WormCat-aggregated

984  functions at level 3 were mapped onto the PCA coordinates 1 and 2 of the laboratory E. coli
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985 strains. The worm functions were correlated to each Principal Component per separate by
986 using Spearman correlation and by correcting the P-value for multiple comparisons with a
987  FDR calculated with the Benjamini-Hochberg method.
988
989 High-throughput imaging and data analysis
990 C. elegans animals were synchronized by standard hypochlorite method, and around 20 L1
991 worms were transferred to each well of 96-well plates seeded with E. coli pangenome strains.
992  The worms were incubated at 20°C until D1 of adulthood and immobilized for imaging with 5
993 uL of 2% levamisole per well using INTEGRA Viaflo-96. Images were acquired by an
994  automated protocol that captured 10 images at fixed z-heights per well under identical
995  exposure settings using a Zeiss Axio Zoom V16 microscope system equipped with an
996 AxioCam camera operated by Zen 2 software (Zeiss). GFP filter set (excitation: 450-490 nm;
997  emission: 500-550 nm) or the RFP filter set (excitation: 559-585 nm; emission: 600-690 nm)
998 was used depending on the strain being imaged. All images were exported in CZI format, and
999 the most focused z-stack was extracted in Phyton (v. 3.12). llastik (v. 1.4) was used to detect
1000 worm pixels and to quantify fluorescence levels per worm/cluster of worms.
1001
1002 The fluorescence data was then filtered such that only single worms (ilastik single worm
1003  probability > 0.5) with a pixel size between 1000 and 6000 or clustered worms (ilastik clustered
1004  worm probability > 0.5) with a pixel size greater than 6000 were retained. Worm mean
1005 fluorescence expressed as the brightness per worm as a whole and corrected per size, was
1006  corrected against the background for each case. The mean-fluorescence of technical
1007 replicates was then averaged, and biological replicates were normalized. Mean-fluorescence
1008  was normalized such that, for each worm reporter, the median of each biological replicate was
1009 equal to the global median of all biological replicates. Following this, for each worm-bacteria
1010  pair the biological replicates, where n > 2 (up to n=5), were subjected to a z-score analysis
1011 using scipy.stats.zscore module (SciPy v1.8) and biological replicates with an absolute z-
1012  score > 1.5 for mean-fluorescence were removed. Given that most data had only 2 biological
1013  replicates and further replicates were only performed in select cases to replace replicates
1014  where some wells reduced data quality, from these sets of biological replicates the two
1015  replicates with the lowest deviation from each other were carried forward. Where only 1
1016  biological replicate (8.9% of worm-bacteria pairs) was available; these were carried forward
1017  alone. Single replicates arise due to empty wells, where reporter worms escape wells and do
1018 not appear in the images; however, differences between single replicates and double
1019  replicates were broadly inexistent. The log2 ratio between each biological replicate pairs'
1020 mean-fluorescence value was then calculated, and the median log2 ratio calculated for each

1021 reporter worm. For each reporter worm dataset, a decreasing threshold was iteratively tested
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1022  for the maximum allowed log2 ratio between replicates and the maximum deviation from the
1023  median log2 ratio. Here, data above the threshold was removed and the Pearson correlation
1024  between the biological replicates calculated using scipy.stats.pearsonr module (SciPy v1.8).
1025  The threshold was continuously decreased and worm-bacteria pairs removed until a Pearson
1026  correlation of >= 0.7 was achieved. The final mean-fluorescence values were then calculated
1027  from the average of the biological replicates. Values were then normalized against the median
1028 for each reporter case for the tree representation, which was visualized with tidytree (v. 0.4.6),
1029 treeio (v. 1.32.0) and phytools (v. 2.4-4).

1030 Pearson correlations of median ratio profiles were calculated for all strain-strain pairs to
1031 produce a correlation matrix using pandas.DataFrame.corr (pandas v2.1.4). A phylogenetic
1032  distance matrix for strains was hierarchical clustered, using the UPGMA algorithm, to produce
1033 a linkage matrix. Hierarchical clustering was performed here using the
1034  scipy.cluster.hierarchy.linkage module (SciPy v1.13.1) and prior to clustering the distance
1035 matrix was converted from the vectorfrom to the square-form  using
1036  scipy.distance.squareform (SciPy v1.13.1). The median ratio correlation matrix was then
1037  clustered either using the phylogenetic linkage matrix or by strain-strain correlation profile

1038 similarity and displayed as a clustered heatmap (Seaborn v0.13.2, matplotlib v3.10.3).

1039  Pearson correlations of median ratio profiles were then calculated for all strain-strain pairs
1040 within the same phylogroup, as above. The percentage of strains with positive or negative
1041 correlations within each phylogroup, as well as for the pangenome, were calculated for a range
1042  of thresholds between 0 to 1 using steps of 0.05, excluding same-strain pairs. Where
1043  correlations were greater than the threshold, they were classed as positively correlated. Where
1044  correlations were less than the negative of the threshold, they were classed as negatively
1045  correlated. Clustered heatmaps were produced for each phylogroup correlation matrix,
1046  hierarchically clustering by strain-strain correlation profile similarity (Seaborn v0.13.2,
1047  matplotlib v3.10.3). Chord plots were calculated as the pairwise Pearson correlation and P-
1048 values corrected by Benjamini-Hochberg. The significance threshold was set at an alpha of
1049  0.05, and results were represented as the symmetrical relation of the significant correlations

1050 existent per phylogroup with the library circlize (v. 0.4.16)

1051

1052  Proteostasis strains and culture conditions

1053 E. coli BW25113 single gene deletion mutants were obtained from the KEIO collection and
1054  confirmed by PCR. The reaction was performed with GoTaq mix and the PCR was carried out

1055 in a PCRmax Alpha Cycler 2 as follows: 2min at 98°C for the initial activation of enzymes, 30
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1056  cycles of 30s at 98°C, 30s at 58°C and 1 min/Kb at 72°C. Each strain was grown in LB broth
1057  overnight and 120 pyL were plated on nematode growth medium (NGM) plates and kept at
1058  20°C for 2 days.

1059 The C. elegans UBV reporter, PP607 (hhls64[unc-119(+); sur-5::UbV-GFP]; hhls73[unc-
1060  119(+); sur-5::mCherry]) was provided by Hoppe Lab, Germany. This strain allows to quantify
1061  the proteasomal activity in vivo thanks to the GFP fused to a non-cleavable ubiquitin (UbV-
1062  GFP) under the control of the ubiquitous sur-5 promoter?®?*25, The following strains were
1063 made for fluorescence  studies: FGC72  nls470[Pcysl-2::GFP];wbmls67  [eft-

1064  3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC73 agls17 [myo-2p::mCherry + irg-
1065  1p::GFP] IV;wbmis67 [eft 3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC74
1066  [rtls30(pfat-7::GFP);wbmls67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC76
1067  wwis25[Pacdh-2::GFP + unc-119(+)];wbmlis67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR
1068 *wbmls65]; FGC77 dvis19 [(pAF15)gst-4p::GFP::NLS] IH;wbmls67 [eft-
1069  3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC78 agls219 [T24B8.5p::GFP::unc-54 3'
1070  UTR + ttx-3p::GFP::unc-54 3' UTR] ll;wbmls67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR
1071 *wbmls65]; FGC79 wwils24 [Pacdh-1::GFP + unc-119(+)];wbmlis67 [eft-
1072  3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmlis65]; FGC80 zcls13[hsp-6::GFP];wbmlis67 [eft-
1073  3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmlis65]; FGC81 dvis70 [hsp-16.2p::GFP + rol-
1074  6(sul006);,wbmis67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmlis65]; FGC82 mgls73
1075  [cyp-14A4p::gfp::cyp-14A4 3’UTR + myo-2p::mCherry] V.,wbmls67 [eft-
1076  3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC83 muls84 [(pAD76) sod-3p::GFP +
1077  rol-6];,wbmlis67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmIls65]; FGC84 wuls177 [Pftn-
1078  1:gfp lin-15(+)];wbmlis67 [eft-3p::3XFLAG::wrmScarlet::unc-54 3'UTR *wbmls65]; FGC89
1079  acdh-1(ok1489), hhis72[unc-119(+); sur-5::mCherry], hhis64 [unc-119(+); sur-5::UbiV-GFP]llI;
1080 FGC120 hphd-1(0k3580); hhis72[unc-119(+); sur-5::mCherry], hhis64 [unc-119(+); sur-5::UbiV-
1081 GFP]IIl; FGC121 mce-1(ok243) I; hhis72[unc-119(+); sur-5::mCherry], hhls64 [unc-119(+); sur-
1082  5::UbiV-GFP]Ill. Worms were maintained at 20°C, on nematode growth medium NGM seeded

1083  with different bacterial strains. We supplemented NGM with homocysteine (final concentration
1084 1and 5 mmol/L), propionate (final concentration 1 and 3 mmol/L) and cobalamin (vitamin B12,
1085 final concentration 150 nmol/L) solubilized in water and filter sterilized.

1086

1087 Double deletion bacterial strain construction
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1088  Double gene deletion has been generated by using strains from the KEIO Library®®. This library
1089 is based on the Escherichia coli strain BW25113. The Kanamycin cassette has been removed
1090 by using the plasmid pCP20. This plasmid encodes the yeast Flp recombinase gene,
1091 chloramphenicol and ampicillin resistant genes, and temperature sensitive replication®. E. coli
1092 BW25113 strains containing a single mutation were transformed following the TSS enhanced
1093  chemical transformation®® and were plated on chloramphenicol 30ug/ml incubated at 30°C
1094  overnight. Clones were selected and streaked on LB with no selection and LB-Kanamycin (50
1095  pg/mL) plates, incubated at 30°C overnight. Kanamycin sensitive clones were streaked on LB
1096 agar plates and incubated at 37°C overnight to stop the replication of the pCP20. Clones were
1097 then streaked on LB, LB-Kanamycin and LB-chloramphenicol and incubated at 37°C
1098  overnight. Sensitive clones to chloramphenicol and kanamycin were selected and kanamycin
1099 cassette removal was confirmed by PCR. From this, we obtained mutant with a single mutation
1100 not carrying a kanamycin cassette. The secondary mutations were then extracted from
1101 another mutant of the Keio library. The strain of interest was lysed by using P1 phage and
1102 transduced in E. coli kanamycin sensitive strain according to the protocol from Thomason et
1103 al. 2007°°%° and was then selected for his resistance to kanamycin. Finally, the presence of
1104  both mutations was confirmed by PCR.

1105

1106  Bacterial growth assay

1107  The optical density (OD) at 595nm was monitored using NuncTM 96-well polystyrene round
1108  bottom microwell plates containing LB overnight at 37°C (previously grown overnight in LB
1109 and diluted 1,000-fold). Plates were placed in the BioTeK BioSpa 8 automated incubator
1110  (Agilent), and OD595 was measured every 30 minutes by the BioTek Citation 3 plate reader
1111 (Agilent) for 24h. Growth curves were extracted and area under the curve (AUC) calculated

1112 by using an in-house Python code (https://github.com/Cabreiro-Lab/cell _dynamics). Growth

1113  curves and stats were performed in Prism 8 (v8.4.0) and in RStudio.

1114

1115  Bacterial overexpression mutant generation

1116  We used strains from the ASKA library, based on the E. coli K-12 strain®®. The expression of
1117  the ORF of interest is under the control of an IPTG-inducible promoter (isopropyl p-D-1-
1118  thiogalactopyranoside) on the plasmid pCA24N carrying chloramphenicol resistance. Clones
1119  overexpressing btuB and tonB were grown in LB broth supplemented with 30 ug/mL of
1120  chloramphenicol at 37°C shaking at 200 rpm, plasmids were then extracted with the kit
1121 Miniprep GenElute (Simga Aldrich PLN350) and resuspend in water. Plasmids were
1122  transformed into strains of interest using the TSS enhanced protocol®®. Once the
1123  transformation was confirmed by PCR, we grown these strains in LB broth supplemented with
1124 1 mmol/L of IPTG at 37°C shaking at 200 rpm for 16 hours.
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1125

1126  UV-irradiation of bacteria

1127  Bacteria strains were irradiated with UV to inactivate them®'. To prepare UV-irradiated E. coli,
1128  an overnight culture was grown in LB broth at 37°C with shaking at 200 rpm for 16 hours. A
1129  CL-1000 UV crosslinker equipped with UV-B lamps was sterilized by wiping with 70% ethanol
1130 and irradiating the chamber for 5 minutes alternatively. The overnight culture was diluted in
1131 fresh sterile LB at a 1:3 ratio and placed in petri dishes. Plates were placed inside the UV
1132  chamber without lids and irradiated for a total of 60 minutes, swirling every 10 minutes to
1133  ensure uniform exposure. To prevent heat shock-induced bacterial death, the chamber was
1134  allowed to cool for 5 minutes between intervals. Following UV treatment, bacteria were
1135  collected into a new sterile 50 mL Falcon tube, centrifuged at 4000 rpm for 10 minutes at 4°C,
1136  and the supernatant was carefully removed. The bacterial pellet was resuspended in LB and
1137  placed on NGM plates for worms.

1138

1139  Protein identification and quantification by LC-MS/MS

1140 Bacterial samples preparation

1141

1142  E. coli BW25113, wild type, Alon::kan, AhtpG::kan, AdnaK::kan, AclpX::kan, AcbpM::kan,
1143  AdnaKAclpX::kan were grown in LB broth overnight at 37°C shaking 200 rpom. NGM plates
1144  were seeded with 120 uL of overnight bacterial cultures and lawns were left to grow at 25°C
1145  for 2 days. 5 biological replicates were included per condition. Bacteria were collected from
1146  plates with PBS 1X buffer using a sterile glass scraper in Diagenode tubes. Samples were
1147  centrifuged at 14000 rpm for 90s at room temperature. The supernatant was removed, and
1148  pellets were resuspended with lysis Buffer (8 mol/L urea, 20 mmol/L hepes pH 8). Samples
1149  were flash frozen in liquid nitrogen and kept on ice from this point onward. Pellets were then
1150 lysed via sonication for 5 minutes at 100% amplitude by using the sonicator waterbath
1151  QSonica Q700. Samples were centrifuged at 20000g for 15 minutes at 4°C to separate the
1152  cellular debris and proteins. Supernatants containing the extracted protein were transferred to
1153 clean tubes and protein concentrations were determined by the Quick start Bradford protein
1154  assay (Biorad) at 565 nm. The BSA was used for standard curves. We proceeded to two
1155  proteomic analyses, the first one with E. coli BW25113, wild type, Alon::kan, AhtpG::kan,
1156  AdnaK:kan, AclpX:kan, AcbpM:kan. The second one has been proceeded with E. coli
1157  BW25113 wild type, AdnaK::kan, AclpX::kan, and AdnaKAclpX::kan.

1158

1159 Worm samples preparation
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1160 N2 worms were cultivated on NGM plates seeded with E. coli BW25113 wild type for 5 days.
1161 Eggs were harvested and L1 were seeded on NGM seeded with bacterial strains of interest
1162 that have been incubated 2 days at 25°C. 5 biological replicates were included per condition.
1163  After 4 days, worms were harvested and washed 5 times with PBS 1X buffer and transferred
1164 in Diagenode tubes. Worms were then resuspended in the lysis buffer (8 mol/L urea, 20
1165 mmol/L hepes pH 8.0). Samples were flash frozen with liquid nitrogen then sonicated 2 times
1166 5 minutes at 100% amplitude by using the sonicator waterbath QSonica Q700. Samples were
1167  centrifuged 20 min 20000 rpm 4°C. Supernatants containing the extracted protein were
1168 transferred to clean tubes and protein concentrations were determined by the Quick start
1169  Bradford protein assay (Biorad) at 565 nm. BSA was used for standard curves.

1170

1171 Sample preparation for bacterial proteomics

1172  Protein samples (100 ug per sample) were processed using an in-solution digestion
1173  procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and
1174 in the dark, to final concentrations of 10 mmol/L dithiothreitol (DTT) and 50 mmol/L 2-
1175  chloroacetamide (2-CAM), respectively. Samples were diluted two-fold for the first analysis
1176  with 20 mmol/L HEPES (pH 8.0), reducing the urea concentration to 4 mol/L, and diluted 8-
1177  fold for the second analysis, reducing the urea concentration to 1 mol/L. This was followed by
1178  the addition of 2 pg of trypsin (Promega, V528A) and incubation overnight for the first analysis.
1179  For the second analysis, an initial LysC (Wako, 121-05063) digestion at a 1: 500 proteases to
1180  protein ratio, for 5 hours at 37°C. Samples were then further diluted to a final urea
1181 concentration of 2 mol/L with 20 mmol/L HEPES (pH 8.0), followed by the addition of trypsin
1182  (Serva, 37286.03) at 1:50 protease to protein ratio. Samples were incubated at 37°C for 16
1183  hours. The digestion of the first analysis was stopped by acidification with a final concentration
1184  of 1% trifluoroacetic acid (TFA) against 0,2% for the second one and protein digests were
1185  desalted using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted
1186  with 60% acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation.
1187

1188  Sample preparation for worm proteomics

1189  Protein samples (100ug/sample in 8M urea) were processed using an in-solution digestion
1190  procedure. Briefly, samples were sequentially reduced and alkylated at room temperature and
1191 in the dark, to final concentrations of 10mM dithiothreitol (DTT) and 50mM 2-chloroacetamide
1192  (2-CAM), respectively. Samples were diluted 8-fold with 20mM HEPES (pH 8.0), reducing the
1193  urea concentration to 1.5M. This was followed by addition of 2ug of trypsin (Promega, V528A).
1194  Samples were incubated over-night at 37°C. The digestion was stopped by acidification with

1195  10% trifluoroacetic acid (TFA) to a final concentration of 1% and protein digests were desalted
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1196  using Glygen C18 spin tips (Glygen Corp, TT2C18.96). Tryptic peptides were eluted with 60%

1197  acetonitrile, 0.1% formic acid (FA). Eluents and dried by vacuum centrifugation.

1198

1199 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis

1200 Dried tryptic digests were re-dissolved in 0.1% TFA and each sample injected at 2ug LC-
1201  MS/MS analysis was performed using an Ultimate 3000 RSLC nano liquid chromatography
1202  system (Thermo Scientific) coupled to a coupled to a Q-Exactive mass spectrometer (Thermo
1203  Scientific) via an EASY spray source (Thermo Scientific). For LC-MS/MS analysis re-dissolved
1204  protein digests were injected and loaded onto a trap column (Acclaim PepMap 100 C18, 100
1205 pm x 2cm) for desalting and concentration at 8 uL/min in 2% acetonitrile, 0.1% TFA. Peptides
1206  were separated on-line to an analytical column (Acclaim Pepmap RSLC C18, 75 ym x 75 cm
1207  for the bacterial samples, and C18, 75 ym x 50 cm for the worm samples) at a flow rate of 200
1208  nL/min and 250 nL/min for the bacteria and worm samples respectively). For bacteria samples,
1209 peptides were separated using a 120 minutes gradient, 4-25% of buffer B for 90 minutes
1210 followed by 25-45% buffer B for another 30 minutes (composition of buffer B — 80%
1211 acetonitrile, 0.1% FA). For worm samples, peptides were separated using a 90 minutes
1212  gradient, 1-22% of buffer B for 60 minutes followed by 22-44% buffer B for another 30 minutes
1213  (composition of buffer B — 75% acetonitrile, 5% DMSO and 0.1% FA). Eluted peptides were
1214  analyzed by the mass spectrometer operating in positive polarity using a data-dependent
1215  acquisition mode. lons for fragmentation were determined from an initial MS1 survey scan at
1216 70000 resolution for bacterial samples and 120000 for worm samples, followed by HCD
1217  (Higher Energy Collision Induced Dissociation) of the top 12 most abundant ions for bacteria
1218 samples and 30 most abundant ions for worm samples at 17500 resolution. MS1 and MS2
1219  scan AGC targets were set to 3e6 and 5e4 for maximum injection times of 50ms and 50ms
1220 respectively. A survey scan m/z range of 375 — 1800 was used, normalized collision energy
1221 set to 27%, charge exclusion enabled with unassigned and +1 charge states rejected and a
1222  minimal AGC target of 1e€3. Dynamic exclusion was set to 45-50 seconds.

1223

1224  Data analysis for proteomics

1225  Raw proteomic files were analyzed by using the Perseus software (version 1.6.2.3 for the
1226  bacterial samples analysis and version 1.6.10.43 for the worm samples) which is part of
1227 MaxQuant to obtain statistical and bioinformatic analysis, as well as for visualization (the
1228 perseus computational platform for comprehensive analysis of proteomics data). LFQ
1229 intensities were located as columns. The data matrix was filtered based on categorical
1230 columns to remove reverse decoy hits, potential contaminants and protein groups which were

1231 ‘only identified by site’. Gene annotations were done by using E. coli K12 (version 20200915)
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1232  or C. elegans (version 20210628) GOBP, GOMF, GOCC, and KEGG database. Data were
1233  log2 transformed. The 5 biological replicates for each mutant were then pooled, compared to
1234  each other and visualized as Volcano plots. Volcano plots were generated based on LFQ
1235 intensities with the following settings: T-test; side: both; number of randomizations: 250;
1236  preserve grouping in randomizations: <none>; FDR: 0.05; SO: 0.1. Then, significant
1237  differences between mutants were exported for a Hierarchical clustering analysis (HCA). This
1238 was carried out after filtering rows based on a minimum of two valid values in at least one
1239  group, Z-scoring of values in rows. The HCA was generated with the following settings for both
1240 rows tree and columns tree: distance: Euclidean; linkage: average; constraint: none;
1241 preprocess with k-means selected (number of clusters: 300; maximal number of iterations: 10;
1242  number of restarts: 1). Further data representation and plotting was carried out in R
1243  programming language.

1244

1245  Given that both AclpX and AdnaKAclpX behave in a similar way opposed to the AdnaK
1246  deficient strain, we subtracted the differences between groups to study the proteins that were
1247  unique to each cluster. We were specifically interested in the set of proteins that were
1248  downregulated in AdnaK opposed to the upregulated in AdnaKAclpX, we used the double
1249 mutant as a control and subtracted the proteins found in AdnaK. Therefore, the effects shown
1250 in the distinct proteins between both groups can be described as the unique signature of the
1251 differential proteostasis capabilities of both groups. In a similar way, the set of proteins
1252  expressed in AdnaK but not in the other groups was studied using the same logic. Thus, the
1253  set of proteins that conferred protein stability was also captured here. Groups were extracted
1254  from the significant proteins using R programming language and the UpSet library v. 1.4.0.
1255

1256  Western blot

1257 Worms were grown on plates seeded with E. coli BW25113, Alon::kan, AhtpG::kan,
1258  AdnaK:kan, AclpX::kan, AcbpM::kan, AhscA::kan, AdnaJ::kan, AhybE::kan from the L1 to
1259  day1 adult stage at 20°C. 75 worms were collected in 100 uL 1X SDS loading buffer. Then
1260 samples were boiled 5 minutes at 95°C at 1400 rpm, sonicated for 5 minutes at 100% of
1261  amplitude by using the sonicator waterbath QSonica Q700, and boiled again for 5 minutes at
1262  95°C at 1400 rpm. Samples were then centrifuged for 5 minutes at 14000 rpm. For the western
1263  blot, proteins from the lysate worms were separated by size using an Invitrogen precast SDS-
1264  Page gel 4-12%. Separated proteins were transferred on a nitrocellulose membrane by a dry
1265  blotting system (iBlot 2 dry blotting system) with a setting according to manufacturer’s
1266 instructions. For the detection of GFP, mCherry and Tubulin, the membranes were probed

1267  with primary Mouse monoclonal antibodies anti-GFP at a 1:5000 dilution (clone JL-8), anti-
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1268 mCherry at a 1:2000 dilution (clone 1C51), anti-alpha tubulin at a 1:10000 dilution (clone B-5-
1269  1-2) respectively. Then membranes were exposed to the secondary antibody, Li-Cor anti-
1270  Mouse 800CW/680 from Donkey at a 10000 dilution.

1271  The intensity of each GFP band was normalized by the intensity of its corresponding mCherry
1272  and Tubulin bands. 3-4 biological replicates were included per condition. Statistical analysis
1273 was done by using a one-way ANOVA with multiple comparisons (Tukey’s multiple
1274  comparison test) with the software PRISMS8 (version 8.4.0).

1275

1276 Nematode fluorescence microscopy

1277  PP607 worms (UBV worms) were cultivated on NGM plates seeded with E. coli BW25113 wild
1278 type for 5 days. Eggs were harvested and L1 were seeded on NGM previously seeded with
1279  bacterial strains of interest incubated 2 days at 25°C. After 4 days at 20°C, a minimum of 11
1280 worms were anesthetized with 2% levamisole on NGM plates and were imaged under a 40x
1281 objective using a Zeiss Axio Zoom V16 microscope system equipped with an AxioCam MRm
1282  camera operated by Zen 2 software (Zeiss). Either the GFP filterset (excitation: 450-490 nm;
1283  emission: 500-550 nm) or the mCherry filterset (excitation: 559-585 nm; emission: 600-690
1284 nm)was used. Allimages were exported in CZI format and fluorescence levels were quantified
1285  using Volocity 5.2 software (PerkinEImer) run on a Surface tablet (Microsoft).

1286  The fluorescence intensity of worms was calculated as the pixel density of the entire cross-
1287  sectional area occupied by worms from which the pixel density of the background had been
1288  subtracted. 3 independent replicates were carried out with a minimum of 11 worms imaged
1289  per condition per replicate. The fluorescence intensity was calculated automatically by setting
1290  a minimum threshold intensity that excluded the background.

1291 3-6 biological replicates were included per condition. Statistical analysis was done by using a
1292  one-way ANOVA with multiple comparisons (Tukey’s multiple comparison test) with the
1293  software GraphPad PRISM8 (version 8.4.0).

1294
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1295  DATA AVAILABILITY
1296
1297  The raw sequences for the transcription profiles of the mono-association experiments with C.

1298 elegans and the E. coli pangenome reported in this study can be accessed in GSE315953.
1299  The raw proteomics profiles reported in the experimental validation can be accessed in PRIDE
1300 under the IDs PXD071769, PXD071818 and PXD071867.

1301
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1333 EXTENDED DATA FIGURES

1334 Extended Data Figure 1
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1336 Extended Data Figure 2

a
b c
A=082,p=0014 y=/6857.39 * x"0.28 d
B1
° A B2 Cabreiro Interproscan 06 Proteinfer goPredSi
° 5 75000 75 NCBI _ 600 . -
«» 2000 2 £
€ e @
£ 8 :
s > g
3 250000 g 400
£ 2
a S — Fitted Data g +
& 1000 3 ~ Real Data 5
M g 20
-g25000 £
C 3 S
G s = ——
ol® —
0 100 200 300 0 & & &
«9\9\ <\°\& ‘&06 <\°\°\ ‘?@b (&d'; 4 o"’\q,b fab
Laboratory E. ool strains 0 2500 5000 7500 10000 05 06 07 08 09 1.0 & é@(\ 'b(sg & é‘cp & & &
Number of Genomes Jaccard similarity between strains A < <
Annotated genes per method per strain Unnanotated genes per method per strain
09909 interpeo protenter gopredsem. —— _—
. g
. cor car o i ETie [ ooredsm [ Tmepesen ][ Poere ]
o 8 ———— — . B — —
om . .
ou o o 3% H
o z
4 86
amo] s
ass $
i) 1t
oo | AP S
l® c4
. g
om2 E
aso H
F ases) =,
T ne‘@‘ F @ ..r RIRFRS 3“, XIS FLELE S FSTE a"«“‘ FFFFF
f 0 =
30000

Cloud Shel Core  Cloud Shel Core  Cloud Shell Core  Cloud Shell Core
W coe
M stel

20000 B couw

i i
Celluiar processes and signaiing_] [nformation storage and processing s{ I
s,
TR | —
10000 = = o
<1
m« so:s M -
2o73 il
.-- ® s e w e
. 23 [ o1l
P
B ol g e ]
I -
B ooprecsim 0 2 E
.merpmscan . l
vill
J ewonos O 5 = il |
80 40 0 3 Eo e R
R i)
Gene set size (in %) . g . ' = °
. [ 34
h « Core .« Shell -+ Cloud - 40 H N !
_J . L] F
»
Phylogroup H I
g g $: i g
$n 8 o 82 "
o he ec Q
§ g’ H
i E A
g a oF § S S —
oG 05000 10000 15000 20000
1. -2 ou Number of elements
g T KL
§ COG category
2. -4 _
20 ) )
PC1 (35.45%)

_A A A A A

20 c
10 R
. .

*
-10 . "‘
=20

Principal component 2 (4.84%)
g5°58
m
T
iz .r' F
[=]
o
oy

-40  -20 0 -40  -20

1 3 3 7 Principal component 1 (9.28%)


https://doi.org/10.64898/2026.01.15.699719
http://creativecommons.org/licenses/by-nc-nd/4.0/

1338

1339

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.15.6997109; this version posted January 15, 2026. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Extended Data Figure 3
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Extended Data Figure 4
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1342 Extended Data Figure 5
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1344  Extended Data Figure 6
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1346 Extended Data Figure 7
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1348 Extended Data Figure 8
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Extended Data Figure 9
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1352 Extended Data Figure 10
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1354 EXTENDED DATA FIGURE/TABLE LEGENDS
1355

1356 Fig. S1 Strain composition and RNA-seq quality control. a, Number of E. coli strains in
1357 the panel classified as human commensal, human pathogenic, animal commensal, laboratory
1358  strains or of unknown origin. b, Read-count distribution per library for the high-throughput
1359 RNA-seq experiment, generated on a NextSeq 2000 P3 run (1.2 x 10° total reads). ¢, PCA of
1360 C. elegans transcriptomes after outlier removal, showing batch-driven separation with
1361  samples from libraries 1, 14 and 15 forming distinct clusters. d, PCA of the same dataset after
1362  batch correction, showing no library-driven separation. e, Violin plot of the number of genes
1363  detected per worm with at least 5 normalized counts. Each dot represents a worm sample;
1364  data is represented by sequencing library. f, Heat map of pairwise Euclidean distances based
1365 on DESeqg2-normalized C. elegans gene expression, with hierarchical clustering of libraries
1366  with dark blue-to-light blue showing close-to-distant relationships between samples. PCA data
1367 and Euclidean distances are showing the VST normalized data from the transcriptional
1368  profiles.

1369

1370 Fig. S2 Functional annotation performance and embedding structure of the E. coli
1371 pangenome. a, Phylogroup frequency Pearson correlation between the laboratory E. coli
1372  trains and an NCBI E. coli collection (R =0.82, P = 0.014). b, Pangenome accumulation curve
1373  forthe 9,558 E. coli genomes. The x-axis shows the number of genomes progressively added
1374  to the analysis, and the y-axis shows the cumulative number of unique genes observed with
1375 increasing pangenome size. ¢, Distribution of the pairwise Jaccard similarity between E. coli
1376  strains from NCBI and the Cabreiro lab collection. Median values per collection are
1377  represented. d, Violin plots representing the fraction of genes annotated by different functional
1378 annotation tools: Interproscan, eggNOG-mapper, Proteinfer and GOPredSim. e, Pearson
1379  correlation of annotated (left) and unannotated (right) fraction per genome and per method
1380 (n=92,435). f, UpSet diagram of the number of genes with a GO term annotation by each one
1381 of the functional annotation methods. Dots in the lower part describe which tool or tools are
1382  being considered in each case. Genome partition is represented as a color in the bar-plot. g,
1383 Maximum information content for the GO terms annotated by each method per genome
1384  partition (n=1,347-60,152). h, PCA projection of the protein embeddings from the linear
1385 reference from the E. coli pangenome. Colors represent the genome fractions of core, shell
1386  and cloud (n=92,244). i, Principal component values of gene embeddings stratified by COG
1387 functional category and pangenome class (n=2-9,802). j, Distribution of genes across COG

1388 categories, partitioned into core, shell and cloud components. Bars show, for each COG
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1389 category, the number of genes assigned to the core, shell and cloud genome. k, PCA
1390 projections of protein embeddings split per genes classified in the different COG categories.
1391 |, PCA projections of the strain embeddings colored by the main E. coli phylogroups (n=9,558).
1392 Data shown in g, i, h and | were tested with two-tail pairwise T-test and significance is
1393  expressed as *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05.

1394

1395 Figure S3. Construction and structure of E. coli strain embeddings. a, PCA of strain
1396 embeddings for the 9,558 E. coli strains, built using three aggregation strategies: (left) addition
1397 of gene embeddings, (middle) average of gene embeddings and (right) weighted average of
1398 gene embeddings (see Methods for a detailed description). Points are colored by phylogroup.
1399 b, Violin plots showing the distributions of PC1 (left) and PC2 (right) coordinates of strain
1400 embeddings, calculated as the average of gene embeddings, across phylogroups. ¢, UMAP
1401  projection of strain embeddings for all 9,558 E. coli strains, revealing distinct clusters colored
1402 by phylogroup. d, Bubble plot of the significant Spearman correlation coefficients (p) between
1403 PC2 of the E. coli strain embeddings and WormCat functional scores across all significant

1404  worm functional categories.
1405

1406 Figure S4. Associations between strain embeddings, WormCat functional responses
1407 and gene reporter phenotypes. a, Scheme showing the high-throughput experimental
1408 design to analyze the C. elegans gene reporters. b, Pearson correlation representation of two
1409  biological replicates per gene reporter in C. elegans (n=589). ¢, Phylogenetic tree of the E.
1410 coli strain panel annotated with ecological niche and C. elegans fluorescent reporter
1411 responses. The innermost layer indicates the origin of each strain (human commensal, human
1412  pathogenic, animal commensal, laboratory strain or unknown). Outer layers show median
1413 normalized fluorescence ratios for each C. elegans gene reporter, mapped onto the
1414  corresponding E. coli strain tips. d, Pairwise Pearson correlation coefficients between E. coli
1415  strains separated by phylogroup (n=589). e, Heat map representing the percentage of positive
1416  and negative correlations within E. coli phylogroups given a range of correlation thresholds (x-
1417  axis) (n=589). f, Chord plots representing the within and between strain correlations between

1418 the main E. coli phylogroups for the positive (left) and positive (right) correlations (n=8-13).
1419

1420 Figure S5. Proteostasis at the host level is regulated by bacterial chaperones. a, Left,

1421 normalized brightness of the worm reporters UBV::GFP over mCherry for worms fed on
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1422  several bacterial species, where color represents each bacterial phylum. Right, representative
1423  fluorescence images from the worm fed on each bacterial species, measuring UBV::GFP and
1424  mCherry worm reporters. Correspondence between the two parts is done by a numeric code.
1425  (n=2-8) b-c, Western blot analysis of Tubulin-UBV::GFP (b) and mCherry (c) expression in E.
1426  colichaperone and protease mutants. Each replicate (1-4) shows protein expression in various
1427  E. coli mutants: 1- BW25113 (control), 2- AdnaK, 3- AdnaJ, 4- Alon, 5- AclpX, 6- AhtpG, 7-
1428  AhscA, 8- AbepA, and 9- AcbpM. Tubulin serves as a loading control. d, Ratio of the
1429  quantification of UBV::GFP over mCherry expression (n=4) (*P < 0.05, **P < 0.01, ***P <
1430 0.001, NS P > 0.05, one-way ANOVA).

1431 Figure S6. Bacterial chaperones and proteases drive proteostasis regulation in the
1432  host. a, Principal Component Analysis of the protein expression profile from E. coli BW25113
1433  control and AdnaK, AclpX, Alon, AhtpG and AcbpM mutants. b, Network representation from
1434  differentially expressed proteins from AdnaK, AclpX, Alon, AhtpG and AcbpM mutants,
1435  protein-protein interactions extracted from STRING database. Colours represent high (blue)
1436  and low (red) expression compared to the control strain BW25113. ¢, Normalised brightness
1437  of the worm reporters UBV::GFP over mCherry for worms fed on several bacterial chaperone
1438 and protease mutants. Stats are represented as coloured stars, black for the double Adnak
1439  mutant vs AdnaK single mutant, blue for the comparison against the control strain BW25113,
1440  and red for the comparison against AdnaK mutant. (n=3-6, *P < 0.05, **P < 0.01, ***P < 0.001,
1441 NS P > 0.05, One-way ANOVA). d, Representative fluorescence images from the worm fed
1442  on each bacterial mutant tested in a and c. e, Representative fluorescence images from the
1443  worm fed on BW25113 (Control) and AdnaK and AclpX mutants living cells (top) and UV-
1444  irradiated cells (bottom). Fluorescence was measured for the UBV::GFP and mCherry worm

1445  reporters.

1446  Figure S7 Growth curves and enrichment of transcriptional responses in E. coli
1447  chaperone mutants. a, Growth curves showing optical density at 595 nm plotted over time
1448  (hours) of wild-type BW25113 (control), AclpX, AdnaK and AdnaKAclpX double-mutant E. coli
1449  strains. b, PCA of the protein expression of E. coli strains BW25113 control and AclpX, AdnaK
1450 and AdnaKAclpX mutant strains. c-d, STRING-based KEGG pathway enrichment for genes
1451 differentially expressed in the E. coli AclpX mutant versus control, highlighting significantly
1452  upregulated (c) and downregulated (d) enriched pathways. Colour represents the FDR values
1453 and circle size the number of genes per category. e-f, STRING-based KEGG pathway
1454  enrichment for genes differentially expressed in the AdnaK mutant versus control, highlighting
1455  significantly upregulated (e) and downregulated (f) enriched pathways. Colour represents the
1456 FDR values and circle size the number of genes per category. g, STRING-based KEGG

1457  pathway enrichment for genes differentially expressed in the AdnaKAcipX double mutant
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1458 compared with the AdnaK single mutant, highlighting significantly upregulated enriched
1459  pathways.

1460

1461 Figure S8. Worm proteomics show an increase in metabolic pathways. a, Principal
1462  Component Analysis of the protein profiles of C. elegans fed on E. coli BW25113 (Control) and
1463  mutants AdnaK, AclpX and AdnaKAclpX. b-c, STRING-based KEGG pathway enrichment for
1464  genes differentially expressed in C. elegans fed with E. coli AdnaK mutant versus control,
1465  highlighting significantly upregulated (b) and downregulated (c) enriched pathways. Colour
1466  represents the FDR values and circle size the number of genes per category. d-e, STRING-
1467 based KEGG pathway enrichment for genes differentially expressed in C. elegans fed with E.
1468  coli AdnaK mutant versus control, highlighting significantly upregulated (d) and downregulated
1469 (e)enriched pathways. Colour represents the FDR values and circle size the number of genes
1470  per category. f, STRING-based KEGG pathway enrichment for genes differentially expressed
1471 in C. elegans fed with E. coli AdnaK versus AdnaKAclpX. Colour represents the FDR values

1472  and circle size the number of genes per category.
1473

1474  Figure S9. Propionate and Vitamin B12 impact bacterial proteostasis. a, Representative
1475  fluorescence images of the UBV::GFP and mCherry reporters from the worm fed on E. coli
1476  chaperone mutants AdnaK, AtonB, AdnaKAclpX and AdnaKAclpXAtonB. b, Fluorescence
1477  quantification of the reporters UBV::GFP and mCherry ratio in worms when fed on E. coli KO
1478  mutant strains (n=3-5). ¢, Fluorescence quantification of the reporters UBV::GFP and mCherry
1479 ratio in worms when fed on control E. coli BW25113 and mutants AdnaK, AdnaKAclpX.
1480  Bacterial strains were supplemented with an over-expression (OE) plasmid in all conditions to
1481  test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P > 0.05, Two-
1482  way ANOVA). d, Fluorescence quantification of the reporters UBV::GFP and mCherry ratio in
1483  worms when fed on control E. coli BW25113 and mutants AdnaK, AdnaKAclpX, AdnaKAclpX
1484  AtonB. Bacterial strains were supplemented with an over-expression (OE) plasmid in all
1485  conditions to test for fluorescence differences (n=4, *P < 0.05, **P < 0.01, ***P < 0.001, NS P
1486 > 0.05, Two-way ANOVA). e-f, Representative fluorescence images of the UBV::GFP and
1487  mCherry reporters from the worm fed on control E. coli BW25113 and mutants AdnaK, AclpX,
1488  AdnaKAclpX in control conditions and when supplemented with 150nM of vitamin B12 (e) and
1489  1-3mM of propionate (f). g, Growth curves showing optical density at 595 nm plotted over time
1490  (hours) of wild-type BW25113 (control), AdnaK, Ascp, AdnaKAscp double-mutant. E. coli
1491 OP50 and the OP50 mutant Ascp correspond to the green and yellow lines. h, Representative
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1492  fluorescence images of the UBV::GFP and mCherry reporters from the worm fed on control E.
1493  coli BW25113 and mutants AdnaK, Ascp and AdnaKAscp.

1494

1495  Figure $10. C. elegans B12 shunt pathway drives propionate metabolism and UPS
1496 impairment. a, Representative fluorescence images of the UBV::GFP and mCherry reporters
1497  from C. elegans N2 strain (control) and worm mutants acdh-1(0), mce-1(0) and hphd-1(0) fed
1498 on E. coli BW25113 in control conditions and when 150nM B12 was supplemented. b,
1499  Representative fluorescence images of the UBV::GFP and mCherry reporters from C. elegans
1500 N2 strain (Control), acdh-1(0), hphd-1(0) in combination with KO Empty Vector (EV), suca-1,
1501 oxct-1, alh-8 strains fed on E. coli BW25113. ¢, Fluorescence quantification of the reporters
1502  UBV::GFP and mCherry ratio in the worm strains from b. Stars describe the significance, the
1503  colour describes to what control have they been tested (n=4, *P < 0.05, **P < 0.01, ***P <
1504 0.001, NS P > 0.05, one-way ANOVA). d, Representative fluorescence images of the
1505 UBV::GFP and mCherry reporters from C. elegans N2 strain fed with control E. coli BW25113,
1506 AatoA and AatoB mutants in control conditions and when 10 mM of acetoacetate were

1507  supplemented.
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